Symbolic computation and construction of soliton-like solutions for a (2+1)-dimensional breaking soliton equation

In this paper, with symbolic computation, sixteen kinds of new special exact soliton-like solutions of (2+1)-dimensional breaking soliton equation are obtained by further generalized projective Riccati equation method.

[1]  Hong-qing Zhang,et al.  Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation☆ , 2002 .

[2]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[3]  Chuntao Yan A simple transformation for nonlinear waves , 1996 .

[4]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[5]  Robert Conte,et al.  Link between solitary waves and projective Riccati equations , 1992 .

[6]  G. Lamb Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium , 1971 .

[7]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[8]  E. Fan,et al.  Extended tanh-function method and its applications to nonlinear equations , 2000 .

[9]  Zuntao Fu,et al.  New kinds of solutions to Gardner equation , 2004 .

[10]  Zhenya Yan Erratum of “Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres” (Chaos, Solitons and Fractals 16 (2003) 759–766) , 2004 .

[11]  Yong Chen,et al.  Symbolic computation and construction of soliton-like solutions for a breaking soliton equation , 2003 .

[12]  Guixu Zhang,et al.  Exact solitary wave solutions of nonlinear wave equations , 2001 .

[13]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[14]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[15]  J. Rogers Chaos , 1876 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[18]  Zhenya Yan,et al.  Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres , 2003 .