Slippery Thermals and the Cumulus Entrainment Paradox

AbstractIn numerical simulations of growing congestus clouds, the maximum upward velocities w typically occur in compact toroidal vortices or thermals. These maxima were tracked, and the momentum budget was analyzed within spherical regions centered on them with objectively determined radii approximately enclosing the vortex ring or pair. Such regions are proposed as an advantageous prototype for rising air parcels due to their prolonged identity as evident in laboratory flows. Buoyancy and other forces are generally less than 0.02 m s−2 (0.7 K). In particular, resolved mixing between thermals and their environment fails to produce the drag normally anticipated, often producing even a slight upward force, indicating that parcel models should allow for significantly different dilution rates for momentum than for material properties. A conceptual model is proposed to explain this as a result of the thermals' internal circulation and detrainment characteristics.The implications of momentum dilution for cumul...

[1]  Patrick Minnis,et al.  Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE , 2004 .

[2]  M. J. M. Hill,et al.  On a Spherical Vortex , 1894 .

[3]  S. Bony,et al.  Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model , 2008 .

[4]  J. David Neelin,et al.  Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection , 2009 .

[5]  Z. Kuang,et al.  Do Undiluted Convective Plumes Exist in the Upper Tropical Troposphere , 2010 .

[6]  J. Turner,et al.  On the energy deficiency in self-preserving convective flows , 1972, Journal of Fluid Mechanics.

[7]  Ming Zhao,et al.  Life Cycle of Numerically Simulated Shallow Cumulus Clouds. Part I: Transport , 2005 .

[8]  A. P. Siebesma,et al.  Evaluation of Parametric Assumptions for Shallow Cumulus Convection , 1995 .

[9]  Richard Neale,et al.  Temperature–Moisture Dependence of the Deep Convective Transition as a Constraint on Entrainment in Climate Models , 2012 .

[10]  H. Jonker,et al.  Subsiding Shells Around Shallow Cumulus Clouds , 2008 .

[11]  Pedro M. M. Soares,et al.  Sensitivity of moist convection to environmental humidity , 2004 .

[12]  D. Baumgardner,et al.  Entrainment and Fine-Scale Mixing in a Continental Convective Cloud , 1989 .

[13]  S. Klein,et al.  Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data , 2010 .

[14]  R. Scorer,et al.  EXPERIMENTS WITH CONVECTION BUBBLES , 1956 .

[15]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[16]  A. Genio,et al.  The Role of Entrainment in the Diurnal Cycle of Continental Convection , 2010 .

[17]  Geoffrey Ingram Taylor,et al.  Turbulent gravitational convection from maintained and instantaneous sources , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  A. P. Siebesma,et al.  Parameterization of the Vertical Velocity Equation for Shallow Cumulus Clouds , 2012 .

[19]  Sourabh S. Diwan,et al.  Laboratory simulations show diabatic heating drives cumulus-cloud evolution and entrainment , 2011, Proceedings of the National Academy of Sciences.

[20]  M. Lemone,et al.  On How Hot Towers Fuel the Hadley Cell: An Observational and Modeling Study of Line-Organized Convection in the Equatorial Trough from TOGA COARE , 2009 .

[21]  Sonia Lasher-Trapp,et al.  A study of thermals in cumulus clouds , 2005 .

[22]  R. Cheloha,et al.  The of a Development , 2004 .

[23]  MARINE METEOROLOGY. SOME RESULTS OF A TRADE CUMULUS CLOUD INVESTIGATION , 1953 .

[24]  R. Neale,et al.  Improved Madden–Julian Oscillations with Improved Physics: The Impact of Modified Convection Parameterizations , 2012 .

[25]  Steven C. Sherwood,et al.  Insights into Cloud-Top Height and Dynamics from the Seasonal Cycle of Cloud-Top Heights Observed by MISR in the West Pacific Region , 2010 .

[26]  J. S. Turner The flow into an expanding spherical vortex , 1964, Journal of Fluid Mechanics.

[27]  Richard Neale,et al.  Parameterizing Convective Organization to Escape the Entrainment Dilemma , 2011 .

[28]  J. Simpson Cumulus Clouds: Numerical Models, Observations and Entrainment , 1983 .

[29]  Thijs Heus,et al.  Mixing in Shallow Cumulus Clouds Studied by Lagrangian Particle Tracking , 2008 .

[30]  J. T. Dawe,et al.  The Influence of the Cloud Shell on Tracer Budget Measurements of LES Cloud Entrainment , 2011 .

[31]  J. Turner,et al.  Buoyancy Effects in Fluids , 1973 .

[32]  H. Stommel ENTRAINMENT OF AIR INTO A CUMULUS CLOUD , 1947 .

[33]  D. Randall,et al.  Updraft and Downdraft Statistics of Simulated Tropical and Midlatitude Cumulus Convection , 2001 .

[34]  David A. Randall,et al.  High-Resolution Simulation of Shallow-to-Deep Convection Transition over Land , 2006 .

[35]  R. S. Scorer,et al.  Bubble theory of penetrative convection , 1953 .

[36]  David B. Parsons,et al.  A Review of Convection Initiation and Motivation for IHOP_2002 , 2006 .

[37]  Ming Zhao,et al.  Life Cycle of Numerically Simulated Shallow Cumulus Clouds. Part II: Mixing Dynamics , 2005 .

[38]  Christopher S. Bretherton,et al.  Mass-Flux Budgets of Shallow Cumulus Clouds , 2001 .

[39]  J. Seinfeld,et al.  Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei , 2004, Science.

[40]  M. Mcpherson,et al.  Introduction to fluid mechanics , 1997 .

[41]  Rick Damiani,et al.  The Structure of Thermals in Cumulus from Airborne Dual-Doppler Radar Observations , 2006 .

[42]  Masahiro Sugiyama,et al.  A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles , 2010 .

[43]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[44]  K. Droegemeier,et al.  Entrainment and Detrainment in Numerically Simulated Cumulus Congestus Clouds. Part III: Parcel Analysis , 1998 .

[45]  David M. Romps,et al.  A Direct Measure of Entrainment , 2010 .

[46]  Jorgen B. Jensen,et al.  A Study of the Source of Entrained Air in Montana Cumuli , 1988 .

[47]  U. Schumann,et al.  Plume Budgets in Clear and Cloudy Convective Boundary Layers , 1991 .

[48]  J. Warner,et al.  On Steady-State One-Dimensional Models of Cumulus Convection , 1970 .

[49]  A. Genio Representing the Sensitivity of Convective Cloud Systems to Tropospheric Humidity in General Circulation Models , 2012 .

[50]  John O. Dabiri,et al.  Fluid entrainment by isolated vortex rings , 2004, Journal of Fluid Mechanics.

[51]  R. Lawson,et al.  A Survey of Temperature Measurements in Convective Clouds , 2005 .

[52]  Tammy M. Weckwerth,et al.  Tropospheric water vapor, convection, and climate , 2010 .

[53]  P. M. Saunders AN OBSERVATIONAL STUDY OF CUMULUS , 1961 .

[54]  S. Sherwood,et al.  Exploring the Land–Ocean Contrast in Convective Vigor Using Islands , 2011 .

[55]  J. Turner,et al.  Buoyant vortex rings , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[56]  Viju O. John,et al.  Does convectively‐detrained cloud ice enhance water vapor feedback? , 2006 .

[57]  R. Carbone,et al.  A Preliminary Morphology of Precipitation Systems In Tropical Northern Australia , 1992 .

[58]  M. Chikira A Cumulus Parameterization with State-Dependent Entrainment Rate. Part II: Impact on Climatology in a General Circulation Model , 2010 .