A necessary and sufficient condition for edge universality of Wigner matrices

In this paper, we prove a necessary and sufficient condition for Tracy-Widom law of Wigner matrices. Consider $N \times N$ symmetric Wigner matrices $H$ with $H_{ij} = N^{-1/2} x_{ij}$, whose upper right entries $x_{ij}$ $(1\le i< j\le N)$ are $i.i.d.$ random variables with distribution $\mu$ and diagonal entries $x_{ii}$ $(1\le i\le N)$ are $i.i.d.$ random variables with distribution $\wt \mu$. The means of $\mu$ and $\wt \mu$ are zero, the variance of $\mu$ is 1, and the variance of $\wt \mu $ is finite. We prove that Tracy-Widom law holds if and only if $\lim_{s\to \infty}s^4\p(|x_{12}| \ge s)=0$. The same criterion holds for Hermitian Wigner matrices.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  M. L. Mehta,et al.  ON THE STATISTICAL PROPERTIES OF THE LEVEL-SPACINGS IN NUCLEAR SPECTRA , 1960 .

[3]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[4]  Statistical Properties of the Sea , 1967 .

[5]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[6]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[7]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[8]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[9]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[10]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[11]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[12]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[13]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[14]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[15]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[16]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[17]  K. Johansson Universality of the Local Spacing Distribution¶in Certain Ensembles of Hermitian Wigner Matrices , 2000, math-ph/0006020.

[18]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[19]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[20]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[21]  S. Péché,et al.  Universality of local eigenvalue statistics for some sample covariance matrices , 2005 .

[22]  A. Ruzmaikina Universality of the Edge Distribution of Eigenvalues of Wigner Random Matrices with Polynomially Decaying Distributions of Entries , 2006 .

[23]  Wigner Random Matrices with Non-Symmetrically Distributed Entries , 2007, math/0702035.

[24]  S. Péché,et al.  On the lower bound of the spectral norm of symmetric random matrices with independent entries , 2007, 0706.0748.

[25]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[26]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[27]  L. Pastur,et al.  Bulk Universality and Related Properties of Hermitian Matrix Models , 2007, 0705.1050.

[28]  G. Biroli,et al.  On the top eigenvalue of heavy-tailed random matrices , 2006, cond-mat/0609070.

[29]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[30]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[31]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[32]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[33]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[34]  Universality for certain Hermitian Wigner Matrices under weak moment conditions , 2009, 0910.4467.

[35]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[36]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[37]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[38]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[39]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[40]  T. Tao,et al.  A central limit theorem for the determinant of a Wigner matrix , 2011, 1111.6300.

[41]  Jun Yin,et al.  The Isotropic Semicircle Law and Deformation of Wigner Matrices , 2011, 1110.6449.

[42]  H. Yau,et al.  Universality of local spectral statistics of random matrices , 2011, 1106.4986.

[43]  Jun Yin,et al.  Eigenvector distribution of Wigner matrices , 2011, 1102.0057.

[44]  Random matrices: Universality of eigenvectors , 2011 .

[45]  Alex Bloemendal,et al.  Limits of spiked random matrices II , 2011, 1109.3704.

[46]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[47]  Wang Zhou,et al.  Tracy-Widom law for the extreme eigenvalues of sample correlation matrices , 2011, 1110.5208.

[48]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[49]  High moments of large Wigner random matrices and asymptotic properties of the spectral norm , 2009, 0907.3743.

[50]  T. Tao,et al.  Random matrices: Sharp concentration of eigenvalues , 2012, 1201.4789.

[51]  Horng-Tzer Yau,et al.  A comment on the Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices , 2012, 1201.5619.

[52]  Jun Yin,et al.  Edge universality of correlation matrices , 2011, 1112.2381.

[53]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[54]  Alex Bloemendal,et al.  Limits of spiked random matrices I , 2010, Probability Theory and Related Fields.