Traceability of sediment analysis

Chemical analysis of sediments provides an efficient tool for water-quality management. A basic sequence of measurements comprises three steps: sampling and sample preparation; grain size as a characteristic sediment feature; and, analytical procedures based on standardized extraction schemes and reference materials. These can be considered as an unbroken chain of comparisons. Further steps are split with regard to specific purposes: sediment-quality assessment, including biological effects; coupling of sediment-quality data with erosion-risk evaluation; chemical changes following resuspension of anoxic sediments; and, modeling of chemical sediment data. In the light of the economic value of these further steps for developing and executing far-reaching management plans, coordinated efforts should be made to improve their traceability (e.g., by organized dissemination of results from on-going research (ageing effects), official documentation of techniques and instruments in a relative new field (erosion effects), extension of standardized extraction schemes (anoxic sediments, capacity-controlling properties), and development of new reference materials (pore water)).

[1]  A. Bruynesteyn,et al.  Evaluation of acid production potential of mining waste materials , 1982 .

[2]  W M Stigliani,et al.  Changes in valued “Capacities” of soils and sediments as indicators of nonlinear and time-delayed environmental effects , 1988, Environmental monitoring and assessment.

[3]  H. Golterman,et al.  Study of the relationship between water quality and sediment transport: A guide for the collection and interpretation of sediment quality data , 1983 .

[4]  H. Hellmann Korngrößenverteilung und organische Spurenstoffe in Gewässersedimenten und Böden , 1983 .

[5]  J. G. Farmer Methodologies for soil and sediment fractionation studies , 2003 .

[6]  P M Chapman,et al.  Presentation and interpretation of Sediment Quality Triad data , 1996, Ecotoxicology.

[7]  A. Mudroch,et al.  Handbook of Techniques for Aquatic Sediments Sampling , 1991 .

[8]  李幼升,et al.  Ph , 1989 .

[9]  U. Förstner Sediments and the European water framework directive , 2002 .

[10]  I. Haag,et al.  Erosion investigation and sediment quality measurements for a comprehensive risk assessment of contaminated aquatic sediments. , 2001, The Science of the total environment.

[11]  U. Förstner,et al.  Bindungsformen von Schwermetallen in Baggerschlämmen , 1982 .

[12]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[13]  Sabine E. Apitz,et al.  A conceptual framework for river-basin-scale sediment management , 2003 .

[14]  G. Cornelissen,et al.  A simple Tenax® extraction method to determine the availability of sediment‐sorbed organic compounds , 2001, Environmental toxicology and chemistry.

[15]  Kamil A. Bekiashev,et al.  International Council for the Exploration of the Sea (ICES) , 1981 .

[16]  J. Jaquet,et al.  Cultural Impact on the Geochemistry of Sediments in Lake Erie , 1976 .

[17]  J. Jaquet,et al.  Surficial Sediments of Lake Erie , 1976 .

[18]  H. Golterman Study of the Relationship Between Water Quality and Sediment Transport , 1983 .

[19]  Lars Håkanson,et al.  Principles of Lake Sedimentology , 1983 .

[20]  H. E. Hawkes,et al.  Geochemistry in Mineral Exploration , 1962 .

[21]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[22]  W. Salomons,et al.  Environmental Management of Solid Waste , 1988 .

[23]  Wim Salomons,et al.  Biogeodynamics of pollutants in soils and sediments : risk assessment of delayed and non-linear responses , 1995 .

[24]  S. McGrath,et al.  A new method to measure effective soil solution concentration predicts copper availability to plants. , 2001, Environmental science & technology.

[25]  U. Förstner,et al.  Effect of sample pretreatment on the reliability of solid speciation data of heavy metals — implications sesfor the study of early diagenetic processes☆ , 1987 .

[26]  Herbert E. Allen,et al.  Analysis of acid‐volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments , 1993 .

[27]  P. H. Rahn A method to mitigate acid-mine drainage in the Shamokin area, Pennsylvania, U.S.A. , 1992 .

[28]  Sabine E. Apitz,et al.  From risk assessment to sediment management an international perspective , 2002 .

[29]  I. Koch,et al.  The Predominance of Inorganic Arsenic Species in Plants from Yellowknife, Northwest Territories, Canada , 2000 .

[30]  P. Jacobs Monitoring of subaqueous depots with active barrier systems for contaminated dredged material using dialysis samplers and DGT probes , 2003 .

[31]  G. Brown,et al.  Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[33]  D. Macdonald,et al.  Summary of a SETAC Technical Workshop Porewater Toxicity Testing: Biological, Chemical, and Ecological Considerations with a Review of Methods and Applications, and Recommendations for Future Areas of Research , 2001 .

[34]  Susanne Heise,et al.  Biological effects-based sediment quality in ecological risk assessment for European waters , 2003 .

[35]  W. Salomons,et al.  Trace metal analysis on polluted sediments , 1980 .

[36]  Peter G. C. Campbell,et al.  Partitioning of trace metals in sediments: Relationships with bioavailability , 1987 .

[37]  J. Hermens,et al.  Polyacrylate-Coated SPME Fibers as a Tool To Simulate Body Residues and Target Concentrations of Complex Organic Mixtures for Estimation of Baseline Toxicity , 2000 .

[38]  W. Chen,et al.  Irreversible adsorption of chlorinated benzenes to natural sediments: implications for sediment quality criteria. , 2000 .

[39]  K. Scott,et al.  TOXICITY OF CADMIUM IN SEDIMENTS: THE ROLE OF ACID VOLATILE SULFIDE , 1990 .

[40]  G. A. Parks,et al.  Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)-clay-water system , 1999 .

[41]  A. A. Sobek,et al.  Field and laboratory methods applicable to overburdens and minesoil. Final report, January 1975--December 1976 , 1978 .

[42]  A. Mudroch,et al.  Manual of aquatic sediment sampling , 1995 .

[43]  J. Hartig,et al.  Peer reviewed: sediment management: deciding when to intervene. , 2000, Environmental science & technology.

[44]  U. Förstner Geochemical techniques on contaminated sediments-river basin view , 2003, Environmental science and pollution research international.

[45]  G. Ankley,et al.  Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments , 1992 .

[46]  Arthur J. Horowitz,et al.  A Primer on Sediment-Trace Element Chemistry , 1991 .

[47]  S. Luoma,et al.  Geochemical Influences on Assimilation of Sediment-Bound Metals in Clams and Mussels , 2000 .

[48]  M. Alexander,et al.  Aging, bioavailability, and overestimation of risk from environmental pollutants , 2000 .

[49]  U. Förstner,et al.  Managing Contaminated Sediments , 2001 .

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[51]  J. Lloyd,et al.  Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples , 1999 .

[52]  Lawrence H. Keith,et al.  Environmental Sampling and Analysis: A Practical Guide , 1991 .

[53]  Angels Sahuquillo,et al.  Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure , 1999 .

[54]  F. Ackermann A procedure for correcting the grain size effect in heavy metal analyses of estuarine and coastal sediments , 1980 .

[55]  J. Williams,et al.  Forms of Phosphorus in the Surficial Sediments of Lake Erie , 1976 .

[56]  D. Mount,et al.  Use of nonpolar resin for reduction of fluoranthene bioavailability in sediment , 1999 .

[57]  G. Ankley,et al.  Predicting the toxicity of metal‐contaminated field sediments using interstitial concentration of metals and acid‐volatile sulfide normalizations , 1996 .

[58]  Paul B. Hatzinger,et al.  Effect of aging of chemicals in soil on their biodegradability and extractability. , 1995, Environmental science & technology.

[59]  U. Förstner Manging contaminated sediments , 2001 .

[60]  S. D. Cunningham,et al.  SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS , 1997 .

[61]  L. Fradkin,et al.  Chemical and biological characterization of municipal sludges, sediments, dredge spoils, and drilling muds , 1988 .