Comparison of electronic structures of mass-selected Ag clusters and thermally grown Ag islands on sputter-damaged graphite surfaces

[1]  Y. D. Kim,et al.  Chemistry of mass-selected Au clusters deposited on sputter-damaged HOPG surfaces: The unique properties of Au8 clusters , 2007 .

[2]  D. Lim,et al.  Interaction of silver with oxygen on sputtered pyrolytic graphite , 2007 .

[3]  G. Faraci,et al.  Pinning of size-selected Pd nanoclusters on graphite. , 2006, The Journal of chemical physics.

[4]  Y. D. Kim,et al.  Oxidation of Au nanoparticles on HOPG using atomic oxygen , 2006 .

[5]  Y. D. Kim,et al.  Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). , 2006, The journal of physical chemistry. B.

[6]  Y. D. Kim,et al.  Size selectivity for CO-oxidation of Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) , 2005 .

[7]  Sungsik Lee,et al.  Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Au(n)/TiO2 catalysts. , 2005, The Journal of chemical physics.

[8]  H. Metiu,et al.  Intact size-selected Au(n) clusters on a TiO2(110)-(1 x 1) surface at room temperature. , 2005, Journal of the American Chemical Society.

[9]  Young Dok Kim,et al.  Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) surfaces studied using STM and XPS , 2005 .

[10]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[11]  H. Freund,et al.  Cluster core-level binding-energy shifts: the role of lattice strain. , 2004, Physical review letters.

[12]  S. Abbet,et al.  Low-temperature cluster catalysis. , 2004, Journal of the American Chemical Society.

[13]  S. Abbet,et al.  Cluster size-dependent mechanisms of the CO + NO reaction on small Pdn (n < or = 30) clusters on oxide surfaces. , 2003, Journal of the American Chemical Society.

[14]  U. Landman,et al.  Supported magnetic nanoclusters: soft landing of Pd clusters on a MgO surface. , 2002, Physical review letters.

[15]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[16]  A. Obraztsov,et al.  Defect induced lowering of work function in graphite-like materials , 2002 .

[17]  M. Streun,et al.  Pinning of size-selected Ag clusters on graphite surfaces , 2000 .

[18]  A. Sánchez,et al.  Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts , 1999 .

[19]  Wolf-Dieter Schneider,et al.  Size-dependent molecular dissociation on mass-selected, supported metal clusters , 1998 .

[20]  R. Palmer,et al.  Energetic impact of small Ag clusters on graphite , 1998 .

[21]  M. W. Roberts,et al.  XPS study of oxygen adsorption on supported silver : effect of particle size , 1997 .

[22]  P. A. Brühwiler,et al.  Interaction of CO with Pd clusters supported on a thin alumina film , 1996 .

[23]  M. Moseler,et al.  Filling of micron‐sized contact holes with copper by energetic cluster impact , 1994 .

[24]  M. Vece,et al.  Pinning of size-selected gold and nickel nanoclusters on graphite , 2005 .

[25]  Roger Smith,et al.  Energetic Impact of Size-Selected Metal Cluster Ions on Graphite , 1998 .

[26]  T. Becker,et al.  Controlled cluster condensation into preformed nanometer-sized pits , 1997 .