Cylindrical algebraic decompositions for boolean combinations

This article makes the key observation that when using cylindrical algebraic decomposition (CAD) to solve a problem with respect to a set of polynomials, it is not always the signs of those polynomials that are of paramount importance but rather the truth values of certain quantifier free formulae involving them. This motivates our definition of a Truth Table Invariant CAD (TTICAD). We generalise the theory of equational constraints to design an algorithm which will efficiently construct a TTICAD for a wide class of problems, producing stronger results than when using equational constraints alone. The algorithm is implemented fully in Maple and we present promising results from experimentation.

[1]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition of Three-Dimensional Space , 1988, J. Symb. Comput..

[2]  Adam W. Strzebonski Computation with semialgebraic sets represented by cylindrical algebraic formulas , 2010, ISSAC.

[3]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[4]  Mohab Safey El Din,et al.  Variant quantifier elimination , 2012, J. Symb. Comput..

[5]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[6]  Adam W. Strzebonski,et al.  Cylindrical Algebraic Decomposition using validated numerics , 2006, J. Symb. Comput..

[7]  James H. Davenport,et al.  The complexity of quantifier elimination and cylindrical algebraic decomposition , 2007, ISSAC '07.

[8]  William Kahan Branch cuts for complex elementary functions , 1987 .

[9]  D Aspinall,et al.  Optimising Problem Formulation for Cylindrical Algebraic Decomposition , 2013 .

[10]  Christopher W. Brown QEPCAD B: a program for computing with semi-algebraic sets using CADs , 2003, SIGS.

[11]  Scott McCallum,et al.  On projection in CAD-based quantifier elimination with equational constraint , 1999, ISSAC '99.

[12]  Bruno Buchberger,et al.  Speeding-up Quantifier Elimination by Gr?bner Bases , 1991 .

[13]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[14]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[15]  James H. Davenport,et al.  A repository for CAD examples , 2013, ACCA.

[16]  Scott McCallum,et al.  An Improved Projection Operation for Cylindrical Algebraic Decomposition , 1985, European Conference on Computer Algebra.

[17]  Scott McCallum On propagation of equational constraints in CAD-based quantifier elimination , 2001, ISSAC '01.

[18]  Andreas Seidl,et al.  Efficient projection orders for CAD , 2004, ISSAC '04.

[19]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[20]  Matthew England An implementation of CAD in Maple utilising McCallum projection , 2013, ArXiv.

[21]  James H. Davenport,et al.  Geometry of branch cuts , 2011, ACCA.

[22]  Christopher W. Brown Simplification of truth-invariant cylindrical algebraic decompositions , 1998, ISSAC '98.

[23]  Christopher W. Brown,et al.  On using bi-equational constraints in CAD construction , 2005, ISSAC.

[24]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[25]  Matthew England,et al.  Program Verification in the Presence of Complex Numbers, Functions with Branch Cuts etc , 2012, 2012 14th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[26]  Christopher W. Brown The McCallum Projection, Lifting, and Order-Invariance , 2005 .

[27]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[28]  G. E. Collins,et al.  Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress , 1998 .