Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain

Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects.

[1]  A P Batista,et al.  Reach plans in eye-centered coordinates. , 1999, Science.

[2]  Jody C Culham,et al.  Behavioral / Systems / Cognitive Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans , 2010 .

[3]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[4]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[5]  I. Toni,et al.  Reference frames for reach planning in human parietofrontal cortex. , 2010, Journal of neurophysiology.

[6]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[7]  Ravi S. Menon,et al.  A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. , 2000, Journal of neurophysiology.

[8]  M. Petrides The Human Cerebral Cortex: An MRI Atlas of the Sulci and Gyri in MNI Stereotaxic Space , 2011 .

[9]  D. J. Cunningham,et al.  Contribution to the surface anatomy of the cerebral hemispheres . with A chapter upon cranio-cerebral topography , 1892 .

[10]  M. Petrides,et al.  Morphological patterns of the postcentral sulcus in the human brain , 2010, The Journal of comparative neurology.

[11]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[12]  Mattia Marangon,et al.  Evidence for context sensitivity of grasp representations in human parietal and premotor cortices. , 2011, Journal of neurophysiology.

[13]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[14]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[15]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[16]  G. Orban,et al.  Action Observation Circuits in the Macaque Monkey Cortex , 2011, The Journal of Neuroscience.

[17]  Iwona Stepniewska,et al.  Multiple Parietal–Frontal Pathways Mediate Grasping in Macaque Monkeys , 2011, The Journal of Neuroscience.

[18]  J. Douglas Crawford,et al.  Specialization of reach function in human posterior parietal cortex , 2012, Experimental Brain Research.

[19]  Hansjörg Scherberger,et al.  Context-Specific Grasp Movement Representation in the Macaque Anterior Intraparietal Area , 2009, The Journal of Neuroscience.

[20]  W. Turner The Convolutions of the Human Cerebrum Topographically Considered , 1866, Edinburgh medical journal.

[21]  Hideo Sakata,et al.  Short-Term Memory and Perceptual Decision for Three-Dimensional Visual Features in the Caudal Intraparietal Sulcus (Area CIP) , 2003, The Journal of Neuroscience.

[22]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[23]  Emad N Eskandar,et al.  Distinct nature of directional signals among parietal cortical areas during visual guidance. , 2002, Journal of neurophysiology.

[24]  Gustaf Retzius,et al.  Das Menschenhirn : Studien in der Makroskopischen Morphologie , 1896 .

[25]  H. Sakata,et al.  Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. , 2001, Journal of neurophysiology.

[26]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[27]  Kenneth F. Valyear,et al.  Human parietal cortex in action , 2006, Current Opinion in Neurobiology.

[28]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[29]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[30]  D. Louis Collins,et al.  Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults , 2006, MICCAI.

[31]  M. Petrides,et al.  Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. , 2014, Cerebral cortex.

[32]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[33]  G. Orban,et al.  The Representation of Tool Use in Humans and Monkeys: Common and Uniquely Human Features , 2009, The Journal of Neuroscience.

[34]  Volkmar Glauche,et al.  Localization of human intraparietal areas AIP, CIP, and LIP using surface orientation and saccadic eye movement tasks , 2008, Human brain mapping.

[35]  Scott T. Grafton,et al.  Human Posterior Parietal Cortex Flexibly Determines Reference Frames for Reaching Based on Sensory Context , 2010, Neuron.

[36]  Scott T. Grafton,et al.  Cortical topography of human anterior intraparietal cortex active during visually guided grasping. , 2005, Brain research. Cognitive brain research.

[37]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[38]  Michael Petrides,et al.  Local Morphology Predicts Functional Organization of the Dorsal Premotor Region in the Human Brain , 2006, The Journal of Neuroscience.

[39]  Kenneth F. Valyear,et al.  Decoding Action Intentions from Preparatory Brain Activity in Human Parieto-Frontal Networks , 2011, The Journal of Neuroscience.

[40]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[42]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[43]  W Pieter Medendorp,et al.  Parietofrontal circuits in goal‐oriented behaviour , 2011, The European journal of neuroscience.

[44]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[45]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[46]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[47]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[48]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[49]  Michael Petrides,et al.  Functional activation during reading in relation to the sulci of the angular gyrus region , 2013, The European journal of neuroscience.

[50]  Scott H. Frey,et al.  Human Anterior Intraparietal and Ventral Premotor Cortices Support Representations of Grasping with the Hand or a Novel Tool , 2010, Journal of Cognitive Neuroscience.

[51]  Ivan Toni,et al.  Understanding Effector Selectivity in Human Posterior Parietal Cortex by Combining Information Patterns and Activation Measures , 2014, The Journal of Neuroscience.

[52]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[53]  H. Sakata,et al.  Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. , 1996, Neuroreport.

[54]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[55]  A. Georgopoulos,et al.  Parietal cortex neurons of the monkey related to the visual guidance of hand movement , 1990, Experimental Brain Research.

[56]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[57]  C. J. Connolly,et al.  External morphology of the primate brain , 1950 .

[58]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[59]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[60]  David C. Van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex , 2005, NeuroImage.