Optimal mass transport and image registration
暂无分享,去创建一个
[1] S. Rachev,et al. Mass transportation problems , 1998 .
[2] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[3] W. Gangbo,et al. Shape recognition via Wasserstein distance , 2000 .
[4] Allen Tannenbaum,et al. Correction to "Nondistorting flattened maps and the 3-D visualization of colon CT images" , 2000 .
[5] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[6] J. Moser. On the volume elements on a manifold , 1965 .
[7] Ron Kikinis,et al. Nondistorting flattening maps and the 3-D visualization of colon CT images , 2000, IEEE Transactions on Medical Imaging.
[8] Wilfrid Gangbo. An elementary proof of the polar factorization of vector-valued functions , 1994 .
[9] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[10] M. Cullen,et al. An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .
[11] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[12] David Spotts Fry. Shape recognition using metrics on the space of shapes , 1993 .
[13] Linda G. Shapiro,et al. Computer and Robot Vision , 1991 .
[14] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[15] Ron Kikinis,et al. On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.