The temporal characteristics of functional activation in Broca's area during overt picture naming

The opercular and triangular sections of the inferior frontal gyrus, also known as Broca's area, have been shown to be involved in various language tasks. In the current study we investigated both the functional role, as well as the precise temporal involvement of Broca's area during picture naming. We applied online event-related transcranial magnetic stimulation (TMS) to Broca's area at five different time points after picture presentation, aiming to cover the complete language production process. Applying real TMS at 300 msec after picture presentation led to an increase in picture naming latency, whereas sham stimulation and real stimulation at earlier and later time windows did not result in any changes in reaction time (RT). Our methodological approach enabled us to get insight into the temporal characteristics of the involvement of this brain area during picture naming. Making use of this information and directly relating it to psycholinguistic models, we conclude that Broca's area may be involved in the process of syllabification during overt speech production.

[1]  Roland Sparing,et al.  Enhancing Picture Naming with Transcranial Magnetic Stimulation , 2006, Behavioural neurology.

[2]  Á. Pascual-Leone,et al.  Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: An open-protocol study , 2005, Brain and Language.

[3]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[4]  R. Goebel,et al.  The Dynamics of Interhemispheric Compensatory Processes in Mental Imagery , 2005, Science.

[5]  Michael P. Kaschak,et al.  Neuroimaging studies of language production and comprehension. , 2003, Annual review of psychology.

[6]  G S Dell,et al.  A spreading-activation theory of retrieval in sentence production. , 1986, Psychological review.

[7]  Niels O. Schiller,et al.  Lexical stress encoding in single word production estimated by event-related brain potentials , 2006, Brain Research.

[8]  Treebank Penn,et al.  Linguistic Data Consortium , 1999 .

[9]  M. Kutas,et al.  Electrophysiological estimates of the time course of semantic and phonological encoding during implicit picture naming. , 2000, Psychophysiology.

[10]  J. Rothwell,et al.  Transcranial magnetic stimulation in cognitive neuroscience – virtual lesion, chronometry, and functional connectivity , 2000, Current Opinion in Neurobiology.

[11]  Richard Passingham,et al.  The Inferior Frontal Gyrus and Phonological Processing: An Investigation using rTMS , 2004, Journal of Cognitive Neuroscience.

[12]  Jean-Francois Mangin,et al.  Modulation of language areas with functional MR image-guided magnetic stimulation , 2006, NeuroImage.

[13]  Alfonso Caramazza,et al.  Grammatical Distinctions in the Left Frontal Cortex , 2001, Journal of Cognitive Neuroscience.

[14]  David E. J. Linden,et al.  Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations , 2003, Brain Research Reviews.

[15]  Mart Bles,et al.  Tracking the time course of phonological encoding in speech production: an event-related brain potential study. , 2003, Brain research. Cognitive brain research.

[16]  R. Töpper,et al.  Facilitation of picture naming after repetitive transcranial magnetic stimulation , 1999, Neurology.

[17]  P. Matthews,et al.  Semantic Processing in the Left Inferior Prefrontal Cortex: A Combined Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation Study , 2003, Journal of Cognitive Neuroscience.

[18]  Avishai Henik,et al.  Virtual Dyscalculia Induced by Parietal-Lobe TMS Impairs Automatic Magnitude Processing , 2007, Current Biology.

[19]  Bernard Mazoyer,et al.  Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing , 2006, NeuroImage.

[20]  Stephen M. Rao,et al.  Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[21]  W. Glaser,et al.  The time course of picture-word interference. , 1984, Journal of experimental psychology. Human perception and performance.

[22]  R. Salmelin Clinical neurophysiology of language: The MEG approach , 2007, Clinical Neurophysiology.

[23]  浜中 淑彦 Carl Wernicke;Der aphasische Symptomencomplex--Eine psychologische Studie auf anatomischer Basis(「失語症候群--解剖学的基礎に立つ心理学的研究」,Max Cohn & Weigert,Breslau,1874) , 1975 .

[24]  P. Broca Remarques sur le siège de la faculté du langage articulé, suivies d'une observation d'aphémie (perte de la parole) , 1861 .

[25]  Rainer Goebel,et al.  The temporal characteristics of motion processing in hMT/V5+: Combining fMRI and neuronavigated TMS , 2006, NeuroImage.

[26]  Willem J. M. Levelt,et al.  A theory of lexical access in speech production , 1999, Behavioral and Brain Sciences.

[27]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[28]  Yasuki Noguchi,et al.  Selective Priming of Syntactic Processing by Event-Related Transcranial Magnetic Stimulation of Broca's Area , 2002, Neuron.

[29]  W. Levelt,et al.  The spatial and temporal signatures of word production components , 2004, Cognition.

[30]  Antje S. Meyer,et al.  An MEG Study of Picture Naming , 1998, Journal of Cognitive Neuroscience.