Artificial photosynthesis for solar water-splitting

[1]  Huijun Zhao,et al.  Inorganic Photocatalysts for Overall Water Splitting , 2012 .

[2]  Koroneos Christopher,et al.  A review on exergy comparison of hydrogen production methods from renewable energy sources , 2012 .

[3]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[4]  P. Tartarini,et al.  Solar Hydrogen Energy Systems: Science and Technology for the Hydrogen Economy , 2012 .

[5]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[6]  Coleman X. Kronawitter,et al.  TiO2-SnO2:F interfacial electronic structure investigated by soft x-ray absorption spectroscopy , 2012 .

[7]  G. Gary Wang,et al.  Hydrogen-treated WO3 nanoflakes show enhanced photostability , 2012 .

[8]  Antonio Luque,et al.  Understanding intermediate-band solar cells , 2012, Nature Photonics.

[9]  K. Ohkubo,et al.  Assemblies of artificial photosynthetic reaction centres , 2012 .

[10]  Ib Chorkendorff,et al.  Solar-fuel generation: Towards practical implementation. , 2012, Nature materials.

[11]  F. Marken,et al.  New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. , 2012, Journal of the American Chemical Society.

[12]  N. Chouhan,et al.  Photoelectrochemical Cells for Hydrogen Generation , 2012 .

[13]  Hannes Jónsson,et al.  Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. , 2012, Physical chemistry chemical physics : PCCP.

[14]  T. Moore,et al.  Realizing artificial photosynthesis. , 2012, Faraday discussions.

[15]  K. Wijayantha,et al.  Kinetics of light-driven oxygen evolution at alpha-Fe2O3 electrodes. , 2012, Faraday discussions.

[16]  G. Fleming,et al.  Design principles of photosynthetic light-harvesting. , 2012, Faraday discussions.

[17]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[18]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[19]  Stafford W. Sheehan,et al.  Hematite-based solar water splitting: challenges and opportunities , 2011 .

[20]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[21]  L. Vayssieres,et al.  Size effect on the conduction band orbital character of anatase TiO2 nanocrystals , 2011 .

[22]  D. Tsai,et al.  A New Approach to Solar Hydrogen Production: a ZnO–ZnS Solid Solution Nanowire Array Photoanode , 2011 .

[23]  Shaohua Shen,et al.  A perspective on solar-driven water splitting with all-oxide hetero-nanostructures , 2011 .

[24]  S. Mao High throughput combinatorial screening of semiconductor materials , 2011 .

[25]  S. Bent,et al.  Electron enrichment in 3d transition metal oxide hetero-nanostructures. , 2011, Nano letters.

[26]  H. Frei,et al.  Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. , 2011, Journal of the American Chemical Society.

[27]  Bridgette A Barry,et al.  Proton coupled electron transfer and redox active tyrosines in Photosystem II. , 2011, Journal of photochemistry and photobiology. B, Biology.

[28]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[29]  B. Parkinson,et al.  Combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. , 2011, ACS Combinatorial Science.

[30]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[31]  Craig A. Grimes,et al.  Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis , 2011 .

[32]  Jin Z Zhang,et al.  Challenges and Opportunities in Light and Electrical Energy Conversion. , 2011, The journal of physical chemistry letters.

[33]  Shaohua Shen,et al.  Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials , 2011 .

[34]  James Barber,et al.  Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement , 2011, Science.

[35]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[36]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[37]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[38]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[39]  H. Susanto Towards practical implementations of membrane distillation , 2011 .

[40]  Alexander J. Cowan,et al.  Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. , 2011, Chemical communications.

[41]  Xiaobo Chen,et al.  Solar hydrogen generation : transition metal oxides in water photoelectrolysis , 2011 .

[42]  Bruce A. Parkinson,et al.  Recent developments in solar water-splitting photocatalysis , 2011 .

[43]  Ryu Abe,et al.  Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation , 2010 .

[44]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[45]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[46]  D. Guldi,et al.  Activating multistep charge-transfer processes in fullerene-subphthalocyanine-ferrocene molecular hybrids as a function of π-π orbital overlap. , 2010, Journal of the American Chemical Society.

[47]  J. Augustynski,et al.  Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. , 2010, Angewandte Chemie.

[48]  Daniel R. Gamelin,et al.  Composite photoanodes for photoelectrochemical solar water splitting , 2010 .

[49]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[50]  P. Ekins Hydrogen energy : economic and social challenges , 2010 .

[51]  Wen-Sheng Chang,et al.  Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. , 2010, Angewandte Chemie.

[52]  Feng Jiao,et al.  Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts , 2010 .

[53]  Xiuli Wang,et al.  Trap states and carrier dynamics of TiO(2) studied by photoluminescence spectroscopy under weak excitation condition. , 2010, Physical chemistry chemical physics : PCCP.

[54]  Qiushi Yin,et al.  A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals , 2010, Science.

[55]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor—Liquid—Solid-Grown Silicon Wire-Array Photocathodes. , 2010 .

[56]  Kazuhiko Maeda,et al.  Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. , 2010, Journal of the American Chemical Society.

[57]  Robin Brimblecombe,et al.  Solar driven water oxidation by a bioinspired manganese molecular catalyst. , 2010, Journal of the American Chemical Society.

[58]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[59]  Lionel Vayssieres,et al.  On solar hydrogen & nanotechnology , 2010 .

[60]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[61]  Erwin Reisner,et al.  Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles. , 2009, Journal of the American Chemical Society.

[62]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[63]  P. Siegbahn Structures and energetics for O2 formation in photosystem II. , 2009, Accounts of chemical research.

[64]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[65]  H. Nemoto,et al.  Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator , 2009 .

[66]  Andrew T. Harris,et al.  Review of Major Design and Scale-up Considerations for Solar Photocatalytic Reactors , 2009 .

[67]  Y. Tachibana,et al.  Charge Recombination Kinetics at an in Situ Chemical Bath-Deposited CdS/Nanocrystalline TiO2 Interface , 2009 .

[68]  L. Vayssieres On the Effect of Nanoparticle Size on Water-Oxide Interfacial Chemistry , 2009 .

[69]  T. Mallouk,et al.  Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. , 2009, Journal of the American Chemical Society.

[70]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[71]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[72]  J. Barber Photosynthetic energy conversion: natural and artificial. , 2009, Chemical Society reviews.

[73]  Helmut Tributsch,et al.  Photovoltaic hydrogen generation , 2008 .

[74]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[75]  M. G. Norton,et al.  Advances in the application of nanotechnology in enabling a ‘hydrogen economy’ , 2008 .

[76]  J. Barber Crystal structure of the oxygen-evolving complex of photosystem II. , 2008, Inorganic chemistry.

[77]  Stuart Licht,et al.  Solar hydrogen generation : toward a renewable energy future , 2008 .

[78]  Paula Hammond,et al.  Natural and artificial , 2007 .

[79]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[80]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[81]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[82]  A. Nozik,et al.  Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers , 2006 .

[83]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[84]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[85]  Michael Grätzel,et al.  New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. , 2006, Journal of the American Chemical Society.

[86]  Ping Huang,et al.  Mimicking the electron donor side of Photosystem II in artificial photosynthesis , 2006, Photosynthesis Research.

[87]  Jinghua Guo,et al.  One‐Dimensional Quantum‐Confinement Effect in α‐Fe2O3 Ultrafine Nanorod Arrays , 2005 .

[88]  Michael Grätzel,et al.  Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis , 2005 .

[89]  M. Grätzel,et al.  Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. , 2005, The journal of physical chemistry. B.

[90]  T. Moore,et al.  Synthesis and photochemistry of a carotene–porphyrin–fullerene model photosynthetic reaction center , 2004 .

[91]  Hideki Kato,et al.  Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. , 2003, Journal of the American Chemical Society.

[92]  Marcus Motzkus,et al.  Quantum control of energy flow in light harvesting , 2002, Nature.

[93]  Anders Hagfeldt,et al.  Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides , 2001 .

[94]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[95]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[96]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite. , 2000 .

[97]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[98]  G. Brudvig,et al.  A functional model for O-O bond formation by the O2-evolving complex in photosystem II. , 1999, Science.

[99]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[100]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[101]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[102]  J. Tait,et al.  Challenges and opportunities. , 1996, Journal of psychiatric and mental health nursing.

[103]  John B. Goodenough,et al.  Electrochemistry and photoelectrochemistry of iron(III) oxide , 1983 .

[104]  T. Ohta,et al.  Solar-hydrogen energy systems , 1979 .

[105]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[106]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .