Frequency sensitivity analysis for beams carrying lumped masses with translational and rotary inertias

[1]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[2]  D. Wang,et al.  Vibration and Sensitivity Analysis of a Beam With a Lumped Mass of Translational and Rotary Inertias , 2012 .

[3]  Yin Zhang,et al.  Eigenfrequency Computation of Beam/Plate Carrying Concentrated Mass/Spring , 2011 .

[4]  Ranjan Ganguli,et al.  Hybrid stiff-string-polynomial basis functions for vibration analysis of high speed rotating beams , 2009 .

[5]  William L. Cleghorn,et al.  Exact Solution of the Oscillatory Behavior Under Axial Force of a Beam with a Concentrated Mass Within its Interval , 2007 .

[6]  Rajamohan Ganesan,et al.  Vibration analysis of tapered composite beams using a higher-order finite element. Part I: Formulation , 2007 .

[7]  Dan Wang,et al.  Optimization of support positions to maximize the fundamental frequency of structures , 2004 .

[8]  Jong‐Shyong Wu,et al.  Free vibrations of solid and hollow wedge beams with rectangular or circular cross‐sections and carrying any number of point masses , 2004 .

[9]  Weihong Zhang,et al.  Frequency Optimization with Respect to Lumped Mass Position , 2003 .

[10]  K. H. Low,et al.  On the methods to derive frequency equations of beams carrying multiple masses , 2001 .

[11]  C. H. Chang,et al.  FREE VIBRATION OF A SIMPLY SUPPORTED BEAM CARRYING A RIGID MASS AT THE MIDDLE , 2000 .

[12]  Y. K. Cheung,et al.  The free vibration of a type of tapered beams , 2000 .

[13]  Charles E. Augarde,et al.  GENERATION OF SHAPE FUNCTIONS FOR STRAIGHT BEAM ELEMENTS , 1998 .

[14]  N. M. Auciello,et al.  VIBRATIONS OF A CANTILEVER TAPERED BEAM WITH VARYING SECTION PROPERTIES AND CARRYING A MASS AT THE FREE END , 1998 .

[15]  M. J. Maurizi,et al.  ON THE NATURAL VIBRATIONS OF TAPERED BEAMS WITH ATTACHED INERTIA ELEMENTS , 1997 .

[16]  Serge Abrate,et al.  Vibration of non-uniform rods and beams , 1995 .

[17]  Lawrence A. Bergman,et al.  The vibration of stepped beams and rectangular plates by an elemental dynamic flexibility method , 1994 .

[18]  G. Subramanian,et al.  Significance and use of very high order derivatives as nodal degrees of freedom in stepped beam vibration analysis , 1990 .

[19]  M. Swaminadham,et al.  A note on frequencies of a beam with a heavy tip mass , 1979 .

[20]  C.W.S. To,et al.  Higher order tapered beam finite elements for vibration analysis , 1979 .

[21]  D. C. D. Oguamanam,et al.  Natural Frequency Sensitivity Analysis with Respect to Lumped Mass Location , 1999 .

[22]  B. Wang,et al.  Eigenvalue sensitivity with respect to location of internal stiffness and mass attachments , 1993 .