IGF2BP1-mediated N6-methyladenosine modification promotes intrahepatic cholangiocarcinoma progression.

[1]  Yan He,et al.  Blockade of Nuclear β‐Catenin Signaling via Direct Targeting of RanBP3 with NU2058 Induces Cell Senescence to Suppress Colorectal Tumorigenesis , 2022, Advanced science.

[2]  Jakob Nikolas Kather,et al.  Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions , 2022, Gut.

[3]  Huadong Liu,et al.  Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc , 2022, Cell Death & Differentiation.

[4]  Wei Zhao,et al.  METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m6A-YTHDF2-dependent manner , 2022, Oncogene.

[5]  Arnaud J. Legrand,et al.  The NUCKS1-SKP2-p21/p27 axis controls S phase entry , 2021, Nature Communications.

[6]  Xuejun Sun,et al.  Multilevel regulation of Wnt signaling by Zic2 in colon cancer due to mutation of β-catenin , 2021, Cell Death & Disease.

[7]  Cuiping Yang,et al.  The role of m6A modification in the biological functions and diseases , 2021, Signal Transduction and Targeted Therapy.

[8]  L. Qi,et al.  Zic Family Member 2 (ZIC2): a Potential Diagnostic and Prognostic Biomarker for Pan-Cancer , 2021, Frontiers in Molecular Biosciences.

[9]  Alice Wedler,et al.  The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer , 2020, Nucleic acids research.

[10]  De Chen,et al.  An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis , 2020, Nature Communications.

[11]  J. Ferlay,et al.  Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012 , 2020, Cancer.

[12]  Ming Zhao,et al.  MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. , 2019, Journal of hepatology.

[13]  Jianren Gu,et al.  A novel, liver-specific long noncoding RNA LINC01093 suppresses HCC progression by interaction with IGF2BP1 to facilitate decay of GLI1 mRNA. , 2019, Cancer letters.

[14]  A. Alimonti,et al.  Cellular Senescence: Aging, Cancer, and Injury. , 2019, Physiological reviews.

[15]  Gang Wu,et al.  LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway , 2019, Journal of experimental & clinical cancer research : CR.

[16]  Jianjun Chen,et al.  IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner , 2018, Nucleic acids research.

[17]  A. Minden,et al.  P21 activated kinase signaling in cancer. , 2019, Seminars in cancer biology.

[18]  Karen E Gascoigne,et al.  Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. , 2018, Cell reports.

[19]  R. Flavell,et al.  RNA m6A modification and its function in diseases , 2018, Frontiers of Medicine.

[20]  Hong Zhang,et al.  Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer , 2018, Journal of Hematology & Oncology.

[21]  Stefan Hüttelmaier,et al.  Recognition of RNA N6-methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation , 2018, Nature Cell Biology.

[22]  Samie R Jaffrey,et al.  Rethinking m6A Readers, Writers, and Erasers. , 2017, Annual review of cell and developmental biology.

[23]  C. Mao,et al.  A Novel IMP1 Inhibitor, BTYNB, Targets c-Myc and Inhibits Melanoma and Ovarian Cancer Cell Proliferation , 2017, Translational oncology.

[24]  J. Yun,et al.  Zic2 promotes tumor growth and metastasis via PAK4 in hepatocellular carcinoma. , 2017, Cancer letters.

[25]  Chuan He,et al.  Post-transcriptional gene regulation by mRNA modifications , 2016, Nature Reviews Molecular Cell Biology.

[26]  P. Zhu,et al.  ZIC2-dependent OCT4 activation drives self-renewal of human liver cancer stem cells. , 2015, The Journal of clinical investigation.

[27]  D. Altshuler,et al.  IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins. , 2015, Cell metabolism.

[28]  B. Njei Changing pattern of epidemiology in intrahepatic cholangiocarcinoma , 2014, Hepatology.

[29]  P. Schirmacher,et al.  Insulin‐like growth factor 2 mRNA‐binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma , 2014, Hepatology.

[30]  Samie R. Jaffrey,et al.  The dynamic epitranscriptome: N6-methyladenosine and gene expression control , 2014, Nature Reviews Molecular Cell Biology.

[31]  I Celardo,et al.  Senescence and aging: the critical roles of p53 , 2013, Oncogene.

[32]  Sae-Ock Oh,et al.  WTAP regulates migration and invasion of cholangiocarcinoma cells , 2013, Journal of Gastroenterology.

[33]  M. Lederer,et al.  Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? , 2012, Cellular and Molecular Life Sciences.

[34]  Q. Zhan,et al.  BAG2 is a target of the c-Myc gene and is involved in cellular senescence via the p21(CIP1) pathway. , 2012, Cancer letters.

[35]  K. Yao,et al.  Zic2 synergistically enhances Hedgehog signalling through nuclear retention of Gli1 in cervical cancer cells , 2011, The Journal of pathology.

[36]  W. Hahn,et al.  A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. , 2008, Cancer cell.

[37]  Dean W. Felsher,et al.  Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation , 2007, Proceedings of the National Academy of Sciences.