On Digital Realizations of Non-integer Order Filters

Typical approach to non-integer order filtering consists of analogue design and implementation. Digital realization of non-integer order systems is susceptible to problems such as infinite memory requirement and sensitivity to numerical errors. The aim of this paper is to present two efficient methods for digital realization of non-integer order filters: discrete time-domain Oustaloup approximation and Laguerre impulse response approximation. Properties of both methods are investigated with use of non-integer low-pass filter. Filters realized with presented methods are then used for filtering of EEG signal. Paper concludes with discussion of merits and flaws of both methods.

[1]  Piotr Bania,et al.  Impulse Response Approximation Method for "Fractional Order Lag" , 2014, RRNR.

[2]  Alain Oustaloup,et al.  State variables and transients of fractional order differential systems , 2012, Comput. Math. Appl..

[3]  Tian-Bo Deng Discretization-free design of variable fractional-delay FIR digital filters , 2001 .

[4]  Karabi Biswas,et al.  A Design Example of a Fractional-Order Kerwin–Huelsman–Newcomb Biquad Filter with Two Fractional Capacitors of Different Order , 2013, Circuits Syst. Signal Process..

[5]  Jerzy Baranowski,et al.  INVESTIGATION OF FIXED-POINT COMPUTATION INFLUENCE ON NUMERICAL SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS , 2011 .

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[7]  Marta Zagórowska,et al.  Parametric Optimization of Non-Integer Order PD ^\mu μ Controller for Delayed System , 2015, RRNR.

[8]  Piotr Bania,et al.  Laguerre Polynomial Approximation of Fractional Order Linear Systems , 2013, RRNR.

[9]  Guido Maione,et al.  Laguerre approximation of fractional systems , 2002 .

[10]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[11]  Jerzy Baranowski,et al.  Stabilisation of magnetic levitation with a PIλD controller , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[12]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[13]  Krzysztof J. Latawiec,et al.  Modeling and identification of a fractional-order discrete-time SISO Laguerre-Wiener system , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[14]  Ahmed Gomaa Radwan,et al.  Optimization of Fractional-Order RLC Filters , 2013, Circuits Syst. Signal Process..

[15]  T. Freeborn,et al.  Fractional-step Tow-Thomas biquad filters , 2012 .

[16]  Alain Oustaloup,et al.  Synthesis of fractional Laguerre basis for system approximation , 2007, Autom..

[17]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[18]  Piotr Bania,et al.  Impulse response approximation method for bi-fractional filter , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[19]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[20]  Jerzy Baranowski,et al.  Time-domain Oustaloup approximation , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[21]  Waldemar Bauer,et al.  Implementation of Non-Integer Order Controller Using Oustaloup Parallel Approximation for Air Heating Process Trainer , 2015, RRNR.

[22]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[23]  Piotr Bania,et al.  Parametric optimization of PDα controller using Laguerre function approximation , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[24]  Ahmed M. Soliman,et al.  Fractional Order Butterworth Filter: Active and Passive Realizations , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[25]  B. T. Krishna,et al.  Active and Passive Realization of Fractance Device of Order 1/2 , 2008 .

[26]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[27]  Yangquan Chen,et al.  Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .

[28]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[29]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[30]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[31]  Jerzy Baranowski,et al.  Bi-Fractional Filters, Part 1: Left Half-Plane Case , 2014, RRNR.

[32]  Mariusz Pelc,et al.  Implementation of an inexpensive EEG headset for the pattern recognition purpose , 2013, 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS).

[33]  Yong Wang,et al.  State space approximation for general fractional order dynamic systems , 2014, Int. J. Syst. Sci..

[34]  Jerzy Baranowski,et al.  On the practical implementation of non-integer order filters , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[35]  Ahmed S. Elwakil,et al.  Field programmable analogue array implementation of fractional step filters , 2010, IET Circuits Devices Syst..

[36]  Mariusz Pelc,et al.  Innovative approach in analysis of EEG and EMG signals — Comparision of the two novel methods , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[37]  Waldemar Bauer,et al.  Non-integer Order PI α D μ Control ICU-MM , 2013, RRNR.

[38]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Jerzy Baranowski,et al.  Discretisation of different non-integer order system approximations , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[40]  Debasmita Mondal,et al.  Design and performance study of phase‐locked loop using fractional‐order loop filter , 2015, Int. J. Circuit Theory Appl..

[41]  Costas Psychalinos,et al.  0.5‐V fractional‐order companding filters , 2015, Int. J. Circuit Theory Appl..

[42]  Ahmed S. Elwakil,et al.  High-quality factor asymmetric-slope band-pass filters: A fractional-order capacitor approach , 2012, IET Circuits Devices Syst..

[43]  Krzysztof J. Latawiec,et al.  Modeling and Identification of Fractional-Order Discrete-Time Laguerre-Based Feedback-Nonlinear Systems , 2014, RRNR.

[44]  Jerzy Baranowski,et al.  Stability Properties of Discrete Time-Domain Oustaloup Approximation , 2015, RRNR.

[45]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .