The extent of the maximum likelihood estimator for the extreme value index

In extreme value analysis, staring from Smith (1987) [1], the maximum likelihood procedure is applied in estimating the shape parameter of tails-the extreme value index @c. For its theoretical properties, Zhou (2009) [12] proved that the maximum likelihood estimator eventually exists and is consistent for @c>-1 under the first order condition. The combination of Zhou (2009) [12] and Drees et al (2004) [11] provides the asymptotic normality under the second order condition for @c>-1/2. This paper proves the asymptotic normality for -1<@[email protected]?-1/2 and the non-consistency for @c<-1. These results close the discussion on the theoretical properties of the maximum likelihood estimator.

[1]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[2]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[3]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[4]  Chen Zhou,et al.  Existence and consistency of the maximum likelihood estimator for the extreme value index , 2009, J. Multivar. Anal..

[5]  Laurens de Haan,et al.  Slow Variation and Characterization of Domains of Attraction , 1984 .

[6]  S. Grimshaw Computing Maximum Likelihood Estimates for the Generalized Pareto Distribution , 1993 .

[7]  Laurens de Haan,et al.  On maximum likelihood estimation of the extreme value index , 2004, math/0407062.

[8]  J. Tiago de Oliveira,et al.  Statistical Extremes and Applications , 1984 .

[9]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[10]  Michael Falk,et al.  Some Best Parameter Estimates for Distributions with Finite Endpoint , 1995 .

[11]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[12]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[13]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[14]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[15]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .