Inferring Complex Hydrographic Processes Using Remote-Sensed Images: Turbulent Fluxes in the Patagonian Gulfs and Implications for Scallop Metapopulation Dynamics

Abstract San Jose Gulf is a small semienclosed bay connected by a narrow mouth to a much larger basin, the San Matias Gulf. Intriguingly, this comparatively small water body, characterized by high biological productivity, has contributed most of the historical shellfish production in the region. A remote sensing approach allowed us to advance a composite conjecture aimed at explaining that phenomenon. A combination of circulation, strong tidal currents, and coastal topography leads to the formation of a frontal system inside San Jose Gulf and to the development of turbulent fluxes that drive the hydrographic regime. The front divides the San Jose Gulf in two domains (west and east). The origin of water flowing into the west domain was tracked to the Valdes Frontal System, on the continental shelf. The west domain is highly turbulent due to the formation of vortexes and dipoles during the tidal cycle. Detachable dipoles formed at the edge of jets outflowing from San Jose Gulf can reach the central part of San Matias Gulf, constituting a possible larval transport mechanism between the two gulfs. Our results led us to postulate that (1) nutrients from the continental shelf are “trapped in” and larvae are retained in the east domain of San Jose Gulf, resulting in persistently high biomass of secondary producers, and (2) asymmetrical exchange, in the form of vorticial flows, “pumps out” waterborne material from the San Jose Gulf into San Matias Gulf, affecting the connectivity between the two basins.

[1]  Y. Afanasyev Formation of vortex dipoles , 2006 .

[2]  Jorge Vazquez-Cuervo,et al.  The Deflection and Division of an Oceanic Baroclinic Jet by a Coastal Boundary: A Case Study in the Alboran Sea , 1998 .

[3]  L. Morgan,et al.  Population and Spatial Structure of Two Common Temperate Reef Herbivores: Abalone and Sea Urchins , 2006 .

[4]  James W. Brown,et al.  Remote sensing of dipole rings , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  H. Nakata,et al.  Tidal-jet and vortex-pair driving of the residual circulation in a tidal estuary , 1994 .

[6]  Starting vortex dipoles in a viscous fluid: Asymptotic theory, numerical simulations, and laboratory experiments , 2004 .

[7]  G. V. Heijst,et al.  A model of tidal flushing of an estuary by dipole formation , 2003 .

[8]  R. Evans,et al.  The Annual Cycle of Satellite-derived Sea Surface Temperature in the Southwestern Atlantic Ocean , 1991 .

[9]  Hermes Mianzan,et al.  Marine fronts at the continental shelves of austral South America: Physical and ecological processes , 2004 .

[10]  M. J. Pizarro Análisis de los resultados de la primera campaña oceanográfica en el Golfo San José , 1975 .

[11]  M. Sinclair Marine Populations: An Essay on Population Regulation and Speciation , 1988 .

[12]  A. Parma,et al.  Chapter 14 Dynamics, assessment and management of exploited natural populations , 2006 .

[13]  Andrés L. Rivas,et al.  Simulación Numérica de la Circulación y Frentes Térmicos en los Golfos Norpatagónicos , 2007 .

[14]  P. Yorio,et al.  DETECTION OF SMALL-SCALE COASTAL OCEANOGRAPHIC PROCESSES THROUGH LANDSAT-TM/ETM+ IMAGES: IMPLICATIONS FOR THE STUDY OF BIOLOGICAL PROCESSES ALONG THE PATAGONIAN COASTS OF ARGENTINA , 2004 .

[15]  L. Charpy,et al.  La production primaire des eaux du golfe San Jose. II. Populations phytoplanctoniques et composition du seston , 1980, Hydrobiologia.

[16]  Kendall L. Carder,et al.  Change detection in shallow coral reef environments using Landsat 7 ETM+ data , 2001 .

[17]  S. Voropayev,et al.  Horizontal jets and vortex dipoles in a stratified fluid , 1991, Journal of Fluid Mechanics.

[18]  N. F. Ciocco,et al.  La pesquería de vieira tehuelche, Chlamys tehuelcha (d'ORB., 1846), del golfo San José (Argentina): abundancia de clases anuales , 1991 .

[19]  Néstor F. Ciocco,et al.  Differences in individual growth rate among scallop (Chlamys tehuelcha (d'Orb.)) populations from San José Gulf (Argentina) , 1991 .

[20]  A. Kostianoy,et al.  Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea '99 experiment , 2002 .

[21]  Daniel R. Lynch,et al.  Resolution issues in numerical models of oceanic and coastal circulation , 2007 .

[22]  T. Royer,et al.  Multiple dipole eddies in the Alaska Coastal Current detected with Landsat thematic mapper data , 1987 .

[23]  R. Negri,et al.  Toxic red-tide in the Argentine Sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area , 1986 .

[24]  L. Charpy,et al.  La production primaire des eaux du golfe San Jose (Peninsule Valdes, Argentine). I. Parametres physiques et teneurs en sels mineraux , 1980, Hydrobiologia.

[25]  L. Charpy,et al.  La production primaire des eaux du golfe San Jose (Peninsule Valdes, Argentine). III. Estimation de la production phytoplanctonique annuelle , 1980, Hydrobiologia.

[26]  S. Baban Detecting water quality parameters in the Norfolk Broads, U.K., using Landsat imagery , 1993 .

[27]  James W. Brown,et al.  Dipole rings and vortex interactions of the Brazil Current , 1996, IEEE Trans. Geosci. Remote. Sens..

[28]  William G. Pichel,et al.  Comparative performance of AVHRR‐based multichannel sea surface temperatures , 1985 .

[29]  D. A. Gagliardini,et al.  ENVIRONMENTAL CHARACTERISTICS OF SAN MATÍAS GULF OBTAINED FROM LANDSAT-TM AND ETM+ DATA , 2004 .

[30]  R. Signell,et al.  Transient eddy formation around headlands , 1991 .

[31]  P. Glorioso Temperature distribution related to shelf-sea fronts on the Patagonian Shelf , 1987 .

[32]  T. Tanimoto,et al.  The role of tidal vortices in material transport around straits , 1994 .