Seismic imaging of the laterally varying D″ region beneath the Cocos Plate

SUMMARY We use an axisymmetric, spherical Earth finite difference algorithm to model SH-wave propagation through cross-sections of laterally varying lower mantle models beneath the Cocos Plate derived from recent data analyses. Synthetic seismograms with dominant periods as short as 4 s are computed for several models: (1) a D �� reflector 264 km above the core‐mantle boundary with laterally varying S-wave velocity increases of 0.9‐2.6 per cent, based on localized structures from a 1-D double-array stacking method; (2) an undulating D �� reflector with large topography and uniform velocity increase obtained using a 3-D migration method and (3) cross-sections through the 3-D mantle S-wave velocity tomography model TXBW. We apply double-array stacking to assess model predictions of data. Of the models explored, the S-wave tomography model TXBW displays the best overall agreement with data. The undulating reflector produces a double Scd arrival that may be useful in future studies for distinguishing between D �� volumetric heterogeneity and D �� discontinuity topography. Synthetics for the laterally varying models show waveform variability not observed in 1-D model predictions. It is challenging to predict 3-D structure based on localized 1-D models when lateral structural variations are on the order of a few wavelengths of the energy used, particularly for the grazing geometry of our data. Iterative approaches of computing synthetic seismograms and adjusting model characteristics by considering path integral effects are necessary to accurately model fine-scale D �� structure.

[1]  J. Revenaugh,et al.  Seismic Evidence of Partial Melt Within a Possibly Ubiquitous Low-Velocity Layer at the Base of the Mantle , 1997 .

[2]  Teh-Ru Alex Song,et al.  Complexity of D″ in the presence of slab‐debris and phase changes , 2006 .

[3]  Mrinal K. Sen,et al.  Evidence for anisotropy in the deep mantle beneath Alaska , 1996 .

[4]  M. Weber P- and S-wave reflections from anomalies in the lowermost mantle , 1993 .

[5]  T. Lay,et al.  High‐resolution investigation of shear wave anisotropy in D″ beneath the Cocos Plate , 2004 .

[6]  T. Lay,et al.  High-resolution imaging of lowermost mantle structure under the Cocos plate , 2004 .

[7]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[8]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[9]  C. Thomas,et al.  Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs , 2004 .

[10]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[11]  C. Young,et al.  Evidence for a shear velocity discontinuity in the lower mantle beneath India and the Indian Ocean , 1987 .

[12]  H. Samuel,et al.  Beyond the thermal plume paradigm , 2005 .

[13]  C. Young,et al.  Analysis of seismic SV waves in the core's penumbra , 1991 .

[14]  T. Lay,et al.  A lower mantle S-wave triplication and the shear velocity structure of D" , 1983 .

[15]  D. Helmberger,et al.  Preliminary evidence for a lower mantle shear wave velocity discontinuity beneath the central Pacific , 1993 .

[16]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[17]  M. Wysession,et al.  Mapping global D″ P velocities from ISC PcP-P differential travel times , 1997 .

[18]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[19]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Heiner Igel,et al.  SH-wave propagation in the whole mantle using high-order finite differences , 1995 .

[21]  K. Bullen Compressibility-Pressure Hypothesis and the Earth's Interior , 1949 .

[22]  J. Ritsema,et al.  Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow. , 2000, Science progress.

[23]  P. Tackley,et al.  Mantle convection and plate tectonics: toward an integrated physical and chemical theory , 2000, Science.

[24]  F. Scherbaum,et al.  Small scatterers in the lower mantle observed at German broadband arrays , 1999 .

[25]  Hiroo Kanamori,et al.  Moho depth variation in southern California from teleseismic receiver functions , 2000 .

[26]  A. Dziewoński,et al.  Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities , 2001 .

[27]  P. Shearer,et al.  Lateral variations in D″ thickness from long‐period shear wave data , 1994 .

[28]  Thorne Lay,et al.  Tomographic inversion of S-SKS times for shear velocity heterogeneity in D″: Degree 12 and hybrid models , 2000 .

[29]  B. Romanowicz,et al.  The COSY Project: verification of global seismic modeling algorithms , 2000 .

[30]  Barbara Romanowicz,et al.  Coupling spectral elements and modes in a spherical Earth: an extension to the ‘sandwich’ case , 2003 .

[31]  C. Young,et al.  Scale lengths of shear velocity heterogeneity at the base of the mantle from S wave differential travel times , 1997 .

[32]  J. Kendall,et al.  Lateral variations in D″ below the Caribbean , 1996 .

[33]  J. Revenaugh,et al.  Detection of a D″ discontinuity in the south Atlantic using PKKP , 2003 .

[34]  D. Helmberger,et al.  Constructing synthetics from deep earth tomographic models , 2000 .

[35]  D. Komatitsch,et al.  Spectral-element simulations of global seismic wave propagation—I. Validation , 2002 .

[36]  P. Shearer,et al.  Topography on the 410-km seismic velocity discontinuity near subduction zones from stacking of sS, sP, and pP precursors , 1998 .

[37]  Heiner Igel,et al.  P‐SV wave propagation in the Earth's mantle using finite differences: Application to heterogeneous lowermost mantle structure , 1996 .

[38]  J. Tsuchiya,et al.  Phase transition in MgSiO3 perovskite in the earth’s lower mantle , 2004 .

[39]  T. Lay,et al.  Finite frequency tomography of D″ shear velocity heterogeneity beneath the Caribbean , 2004 .

[40]  T. Lay,et al.  Investigation of a lower mantle shear wave triplication using a broadband array , 1984 .

[41]  T. Lay,et al.  D shear velocity heterogeneity, anisotropy and discontinuity structure beneath the Caribbean and Central America , 2002 .

[42]  Wolfgang Friederich,et al.  COMPLETE SYNTHETIC SEISMOGRAMS FOR A SPHERICALLY SYMMETRIC EARTH BY A NUMERICAL COMPUTATION OF THE GREEN'S FUNCTION IN THE FREQUENCY DOMAIN , 1995 .

[43]  D. Helmberger,et al.  Modelling D″ structure beneath Central America with broadband seismic data , 1997 .

[44]  P. Tackley,et al.  A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle , 2005, Nature.

[45]  Dapeng Zhao,et al.  Seismic ray path variations in a 3D global velocity model , 2004 .

[46]  T. Lay,et al.  Seismic detection of folded, subducted lithosphere at the core–mantle boundary , 2006, Nature.

[47]  M. Gurnis,et al.  Evidence for a ubiquitous seismic discontinuity at the base of the mantle , 1999, Science.

[48]  T. Lay,et al.  Partial melting in a thermo-chemical boundary layer at the base of the mantle , 2004 .

[49]  T. Jordan,et al.  Aspherical structure of the core‐mantle boundary from PKP travel times , 1986 .

[50]  T. Lay,et al.  Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska , 1997 .

[51]  J. Tsuchiya,et al.  Elasticity of post‐perovskite MgSiO3 , 2004 .

[52]  H. Nataf,et al.  Laterally varying reflector at the top of D , 1993 .

[53]  T. Lay,et al.  Lateral variation of the D″ discontinuity beneath the Cocos Plate , 2004 .

[54]  T. Lay,et al.  Investigation of laterally heterogeneous shear velocity structure in D″ beneath Eurasia , 1992 .

[55]  M. Thorne,et al.  Global SH-wave propagation using a parallel axi-symmetric finite-difference scheme , 2006 .

[56]  G. Laske,et al.  A shear - velocity model of the mantle , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  M. Weber,et al.  Evidence of a laterally variable lower mantle structure from P‐ and S‐waves , 1990 .

[58]  C. Young,et al.  Multiple phase analysis of the shear velocity structure in the D″ region beneath Alaska , 1990 .

[59]  T. Lay,et al.  A Post-Perovskite Lens and D'' Heat Flux Beneath the Central Pacific , 2006, Science.

[60]  G. Masters,et al.  Lower-mantle structure from ScS–S differential travel times , 1991, Nature.

[61]  Guust Nolet,et al.  Fréchet kernels for finite-frequency traveltimes—I. Theory , 2000 .

[62]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[63]  B. Romanowicz,et al.  3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling , 2005 .

[64]  C. H. Chapman,et al.  A new method for computing synthetic seismograms , 1978 .

[65]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[66]  T. Lay,et al.  Shear velocity variation within the D″ region beneath the central Pacific , 2006 .