Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling
暂无分享,去创建一个
D. Thissen | Li Cai | Wei Tian | Tao Xin
[1] Li Cai,et al. Characterizing Sources of Uncertainty in Item Response Theory Scale Scores , 2012, Educational and psychological measurement.
[2] Li Cai,et al. Generalized full-information item bifactor analysis. , 2011, Psychological methods.
[3] S. Reise,et al. Using the Nominal Response Model to Evaluate Response Category Discrimination in the PROMIS Emotional Distress Item Pools , 2011 .
[4] Li Cai,et al. A Two-Tier Full-Information Item Factor Analysis Model with Applications , 2010 .
[5] Li Cai,et al. The Nominal Categories Item Response Model , 2010 .
[6] Ke-Hai Yuan,et al. The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery , 2010, Psychometrika.
[7] M. Langer. A reexamination of Lord's Wald test for differential item functioning using item response theory and modern error estimation , 2008 .
[8] Li Cai,et al. SEM of another flavour: two new applications of the supplemented EM algorithm. , 2008, The British journal of mathematical and statistical psychology.
[9] K. Shigemasu,et al. Standard Errors of Estimated Latent Variable Scores With Estimated Structural Parameters , 2008 .
[10] D. Thissen,et al. Limited-information goodness-of-fit testing of item response theory models for sparse 2 tables. , 2006, The British journal of mathematical and statistical psychology.
[11] Frank B. Baker,et al. Item Response Theory : Parameter Estimation Techniques, Second Edition , 2004 .
[12] Mark D. Reckase,et al. Item Response Theory: Parameter Estimation Techniques , 1998 .
[13] G. McLachlan,et al. The EM algorithm and extensions , 1996 .
[14] Allan S. Cohen,et al. Detection of Differential Item Functioning in Multiple Groups. , 1995 .
[15] Ronald K. Hambleton,et al. Item Parameter Estimation Errors and Their Influence on Test Information Functions , 1994 .
[16] Robert J. Mislevy,et al. DEALING WITH UNCERTAINTY ABOUT ITEM PARAMETERS: EXPECTED RESPONSE FUNCTIONS , 1994 .
[17] Xiao-Li Meng,et al. Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm , 1991 .
[18] R. Tsutakawa,et al. The effect of uncertainty of item parameter estimation on ability estimates , 1990 .
[19] I. Meilijson. A fast improvement to the EM algorithm on its own terms , 1989 .
[20] R. Darrell Bock,et al. Item Pool Maintenance in the Presence of Item Parameter Drift. , 1988 .
[21] David Thissen,et al. A taxonomy of item response models , 1986 .
[22] H. Wainer,et al. Confidence Envelopes for Item Response Theory , 1983 .
[23] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters , 1982 .
[24] David Thissen,et al. Marginal maximum likelihood estimation for the one-parameter logistic model , 1982 .
[25] R. D. Bock,et al. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .
[26] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[27] M. Kupperman. Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .
[28] R. Darrell Bock,et al. Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .
[29] R. Darrell Bock,et al. Fitting a response model forn dichotomously scored items , 1970 .
[30] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1968 .
[31] Calyampudi R. Rao,et al. Linear Statistical Inference and Its Applications. , 1975 .
[32] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[33] Raymond J. Adams,et al. PISA 2000 technical report , 2002 .
[34] R. Jennrich,et al. Standard errors for EM estimation , 2000 .
[35] T. Louis. Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .
[36] Stephen E. Fienberg,et al. Discrete Multivariate Analysis: Theory and Practice , 1976 .
[37] M. Woodbury. A missing information principle: theory and applications , 1972 .