Bmc Molecular Biology the Vasa Regulatory Region Mediates Germline Expression and Maternal Transmission of Proteins in the Malaria Mosquito Anopheles Gambiae: a Versatile Tool for Genetic Control Strategies

[1]  Andrea Crisanti,et al.  Targeting the X Chromosome during Spermatogenesis Induces Y Chromosome Transmission Ratio Distortion and Early Dominant Embryo Lethality in Anopheles gambiae , 2008, PLoS genetics.

[2]  A. Burt,et al.  The Population Genetics of Using Homing Endonuclease Genes in Vector and Pest Management , 2008, Genetics.

[3]  C. Dye,et al.  World Malaria Report, 2008. , 2008 .

[4]  A. James,et al.  nanos gene control DNA mediates developmentally regulated transposition in the yellow fever mosquito Aedes aegypti , 2007, Proceedings of the National Academy of Sciences.

[5]  Lorian Schaeffer,et al.  A Synthetic Maternal-Effect Selfish Genetic Element Drives Population Replacement in Drosophila , 2007, Science.

[6]  Lorian Schaeffer,et al.  A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila. , 2007, Science.

[7]  Sarah K. Baxter,et al.  Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases , 2007, Nucleic acids research.

[8]  Christl A Donnelly,et al.  Late-acting dominant lethal genetic systems and mosquito control , 2007, BMC Biology.

[9]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[10]  P. Duchateau,et al.  A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences , 2006, Nucleic acids research.

[11]  F. Kafatos,et al.  High efficiency germ-line transformation of mosquitoes , 2006, Nature Protocols.

[12]  Barry L. Stoddard,et al.  Homing endonuclease I-CreI derivatives with novel DNA target specificities , 2006, Nucleic acids research.

[13]  S. Sinkins,et al.  Gene drive systems for insect disease vectors , 2006, Nature Reviews Genetics.

[14]  D. Baker,et al.  Computational redesign of endonuclease DNA binding and cleavage specificity , 2006, Nature.

[15]  O. Nureki,et al.  Structural Basis for RNA Unwinding by the DEAD-Box Protein Drosophila Vasa , 2006, Cell.

[16]  F. Catteruccia,et al.  An Anopheles transgenic sexing strain for vector control , 2005, Nature Biotechnology.

[17]  M. Jacobs-Lorena,et al.  Driving midgut‐specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements , 2005, Insect molecular biology.

[18]  B. Stoddard Homing endonuclease structure and function , 2005, Quarterly Reviews of Biophysics.

[19]  A. James Gene drive systems in mosquitoes: rules of the road. , 2005, Trends in parasitology.

[20]  Weltgesundheitsorganisation World malaria report , 2005 .

[21]  Yury Goltsev,et al.  Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. , 2004, Developmental biology.

[22]  D. O’brochta,et al.  Ectopic Expression of a Cecropin Transgene in the Human Malaria Vector Mosquito Anopheles gambiae (Diptera: Culicidae): Effects on Susceptibility to Plasmodium , 2004, Journal of medical entomology.

[23]  Mark Q Benedict,et al.  The first releases of transgenic mosquitoes: an argument for the sterile insect technique. , 2003, Trends in parasitology.

[24]  Austin Burt,et al.  Site-specific selfish genes as tools for the control and genetic engineering of natural populations , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  A. Ghosh,et al.  Bee Venom Phospholipase Inhibits Malaria Parasite Development in Transgenic Mosquitoes* , 2002, The Journal of Biological Chemistry.

[26]  A. James,et al.  Malaria Control with Genetically Manipulated Insect Vectors , 2002, Science.

[27]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[28]  L. Alphey Re-engineering the sterile insect technique. , 2002, Insect biochemistry and molecular biology.

[29]  A. Handler,et al.  Germ‐line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient , 2002, Insect molecular biology.

[30]  Satoru Kobayashi,et al.  Identification of a transcriptional regulatory region for germline-specific expression of vasa gene in Drosophila melanogaster , 2002, Mechanisms of Development.

[31]  Xiao-Fan Wang,et al.  Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite , 2002 .

[32]  T. K. Stevens,et al.  Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element , 2001, Insect molecular biology.

[33]  B. Stoddard,et al.  Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. , 2001, Nucleic acids research.

[34]  Andrea Crisanti,et al.  Stable germline transformation of the malaria mosquito Anopheles stephensi , 2000, Nature.

[35]  D. Thomas,et al.  Insect population control using a dominant, repressible, lethal genetic system. , 2000, Science.

[36]  R. Lehmann,et al.  Regulation of zygotic gene expression in Drosophila primordial germ cells , 1998, Current Biology.

[37]  R. Lehmann,et al.  Germ cell development in Drosophila. , 1996, Annual review of cell and developmental biology.

[38]  P. Lasko,et al.  Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. , 1994, Development.

[39]  E. Wieschaus,et al.  Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. , 1991, Genetics.

[40]  Y. Jan,et al.  A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases , 1988, Cell.

[41]  M. Ashburner,et al.  The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A , 1988, Nature.

[42]  Y. Jan,et al.  Identification of a component of Drosophila polar granules. , 1988, Development.

[43]  M. Mogi,et al.  Biology of mosquitoes. , 1987 .