3D‐Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li‐CO2 Batteries

[1]  Zhen Zhou,et al.  Identification of cathode stability in Li–CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene , 2018 .

[2]  Kun Fu,et al.  Design of High Capacity Dissoluble Electrodes for All Transient Batteries , 2017 .

[3]  Jun Chen,et al.  Flexible Li-CO2 Batteries with Liquid-Free Electrolyte. , 2017, Angewandte Chemie.

[4]  S. Contarini,et al.  Ion bombardment-induced decomposition of Li and Ba sulfates and carbonates studied by X-ray photoelectron spectroscopy , 1985 .

[5]  Jianwei Song,et al.  3D printed separator for the thermal management of high-performance Li metal anodes , 2018 .

[6]  Lili Liu,et al.  Mo2C/CNT: An Efficient Catalyst for Rechargeable Li–CO2 Batteries , 2017 .

[7]  Si Qin,et al.  Development of Graphene Oxide/Polyaniline Inks for High Performance Flexible Microsupercapacitors via Extrusion Printing , 2018 .

[8]  M. Becker,et al.  Three-Dimensional Bicontinuous Graphene Monolith from Polymer Templates. , 2015, ACS nano.

[9]  Kai Cui,et al.  Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors , 2015 .

[10]  S. Choudhury,et al.  Nanoporous Hybrid Electrolytes for High‐Energy Batteries Based on Reactive Metal Anodes , 2017 .

[11]  Chengzhou Zhu,et al.  Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. , 2015, Chemical reviews.

[12]  Liwei Lin,et al.  3D printed microfluidics and microelectronics , 2018 .

[13]  J. Dai,et al.  In Situ, Fast, High‐Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix , 2017 .

[14]  Yongyao Xia,et al.  A Rechargeable Li-CO2 Battery with a Gel Polymer Electrolyte. , 2017, Angewandte Chemie.

[15]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[16]  Xiaojing Wang,et al.  Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. , 2016, Chemical reviews.

[17]  Partha P. Mukherjee,et al.  Enabling aqueous processing for crack-free thick electrodes , 2017 .

[18]  R. Carter,et al.  Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening. , 2018, ACS applied materials & interfaces.

[19]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[20]  R. Libanori,et al.  Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. , 2018, ACS nano.

[21]  Martin Pumera,et al.  Helical 3D‐Printed Metal Electrodes as Custom‐Shaped 3D Platform for Electrochemical Devices , 2016 .

[22]  Zhen Zhou,et al.  Verifying the Rechargeability of Li‐CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N‐Doped Graphene , 2017, Advanced science.

[23]  Zhiqiang Gao,et al.  Heteroatom Doping Combined with Microstructured Carbon to Enhance the Performance of Sodium‐Ion Batteries , 2017 .

[24]  Zhang Zhang,et al.  Metal–CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source , 2017, Advanced materials.

[25]  Zhang Zhang,et al.  The First Introduction of Graphene to Rechargeable Li-CO2 Batteries. , 2015, Angewandte Chemie.

[26]  Jianwei Song,et al.  All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance , 2017 .

[27]  Liangbing Hu,et al.  Progress in 3D Printing of Carbon Materials for Energy‐Related Applications , 2017, Advanced materials.

[28]  Ping He,et al.  Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage , 2017 .

[29]  J. Lewis,et al.  3D Printing of Customized Li‐Ion Batteries with Thick Electrodes , 2018, Advanced materials.

[30]  Zhen Zhou,et al.  High performance Li–CO2 batteries with NiO–CNT cathodes , 2018 .

[31]  Yu Zhu,et al.  Metal Organic Frameworks Derived Hierarchical Hollow NiO/Ni/Graphene Composites for Lithium and Sodium Storage. , 2016, ACS nano.

[32]  M. Langell,et al.  Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS , 2012 .

[33]  Chee Kai Chua,et al.  Emerging 3D‐Printed Electrochemical Energy Storage Devices: A Critical Review , 2017 .

[34]  S. Choudhury,et al.  Designer interphases for the lithium-oxygen electrochemical cell , 2017, Science Advances.

[35]  Ping He,et al.  A reversible lithium–CO2 battery with Ru nanoparticles as a cathode catalyst , 2017 .

[36]  André R. Studart,et al.  Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures , 2017 .

[37]  Yonggang Yao,et al.  Highly Conductive, Lightweight, Low‐Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors , 2017 .

[38]  Yingchun Lyu,et al.  Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery , 2014 .

[39]  Lynden A. Archer,et al.  The Li–CO2 battery: a novel method for CO2 capture and utilization , 2013 .

[40]  Xiaodong Li,et al.  Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. , 2014, Nanoscale.

[41]  Ronald A. Smaldone,et al.  Diels–Alder Reversible Thermoset 3D Printing: Isotropic Thermoset Polymers via Fused Filament Fabrication , 2017 .

[42]  Shaomao Xu,et al.  Tuning the High-Temperature Wetting Behavior of Metals toward Ultrafine Nanoparticles. , 2018, Angewandte Chemie.

[43]  Jianwei Song,et al.  3D‐Printed, All‐in‐One Evaporator for High‐Efficiency Solar Steam Generation under 1 Sun Illumination , 2017, Advanced materials.

[44]  R. Carter,et al.  Sustainable Capture and Conversion of Carbon Dioxide into Valuable Multiwalled Carbon Nanotubes Using Metal Scrap Materials , 2017 .

[45]  Yun Qiao,et al.  Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation , 2017 .

[46]  Feng Zhang,et al.  3D printing technologies for electrochemical energy storage , 2017 .

[47]  Feng Li,et al.  Charge delivery goes the distance , 2017, Science.

[48]  J. Connell,et al.  Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode. , 2017, Angewandte Chemie.