Fast and Rigorous Computation of Special Functions to High Precision
暂无分享,去创建一个
[1] Peter Borwein. Reduced complexity evaluation of hypergeometric functions , 1987 .
[2] William Watkins,et al. The minimal polynomial of cos(2π/n) , 1993 .
[3] A Fast Numerical Algorithm for the Composition of Power Series with Complex Coefficients , 1986, Theor. Comput. Sci..
[4] Donald E. Knuth,et al. Notes on generalized Dedekind sums , 1977 .
[5] Martin Ziegler,et al. Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications , 2005, ArXiv.
[6] Jonathan M. Borwein,et al. Experimental Mathematics: Recent Developments and Future Outlook , 2000 .
[7] Peter Borwein,et al. An efficient algorithm for the Riemann zeta function , 1995 .
[8] John E. Hopcroft,et al. Duality Applied to the Complexity of Matrix Multiplication and Other Bilinear Forms , 1973, SIAM J. Comput..
[9] P. Pollack. The average least quadratic nonresidue modulo m and other variations on a theme of Erdős , 2012 .
[10] Kevin James,et al. Computing the integer partition function , 2007, Math. Comput..
[11] Fredrik Johansson,et al. A fast algorithm for reversion of power series , 2011, Math. Comput..
[12] Richard P. Brent,et al. Some New Algorithms for High-Precision Computation of Euler’s Constant , 1980 .
[13] Ken Ono,et al. Class polynomials for nonholomorphic modular functions , 2013, 1301.5672.
[14] A. I. Bogolubsky,et al. Fast evaluation of the hypergeometric function pFp−1(a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ζ(α, s) , 2006, Programming and Computer Software.
[15] Jean-Luc Rémy,et al. Arbitrary Precision Error Analysis for computing $\zeta(s)$ with the Cohen-Olivier algorithm: Complete description of the real case and preliminary report on the general case , 2006 .
[16] A. J. Stothers. On the complexity of matrix multiplication , 2010 .
[17] Meagen M Rosenthal. Curriculum vitae for , 2015 .
[18] Charles Knessl,et al. An effective asymptotic formula for the Stieltjes constants , 2011, Math. Comput..
[19] Rick Kreminski. Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants , 2003, Math. Comput..
[20] Daniel J. Bernstein. Composing Power Series Over a Finite Ring in Essentially Linear Time , 1998, J. Symb. Comput..
[21] T. Apostol. Modular Functions and Dirichlet Series in Number Theory , 1976 .
[22] Linas Vepstas. An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions , 2007, Numerical Algorithms.
[23] Marc Mezzarobba,et al. A Note on the Space Complexity of Fast D-Finite Function Evaluation , 2012, CASC.
[24] Joris van der Hoeven,et al. Fast Evaluation of Holonomic Functions , 1999, Theor. Comput. Sci..
[25] Georg Heinig,et al. An inversion formula and fast algorithms for Cauchy-Vandermonde matrices , 1993 .
[26] Richard P. Brent,et al. The complexity of multiple-precision arithmetic , 2010, ArXiv.
[27] Joachim von zur Gathen,et al. Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.
[28] Fredrik Johansson,et al. Evaluating parametric holonomic sequences using rectangular splitting , 2013, ISSAC.
[29] David M. Smith,et al. Efficient multiple-precision evaluation of elementary functions , 1989 .
[30] Joris van der Hoeven,et al. Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..
[31] Fredrik Johansson,et al. Efficient implementation of the Hardy-Ramanujan-Rademacher formula , 2012, 1205.5991.
[32] K. Ono. Distribution of the partition function modulo m , 2001 .
[33] Gleb Beliakov,et al. Zeroes of Riemann's zeta function on the critical line with 20000 decimal digits accuracy , 2011 .
[34] David Harvey. Faster algorithms for the square root and reciprocal of power series , 2011, Math. Comput..
[35] Bruno Haible,et al. Fast Multiprecision Evaluation of Series of Rational Numbers , 1998, ANTS.
[36] Marc Mezzarobba,et al. NumGfun: a package for numerical and analytic computation with D-finite functions , 2010, ISSAC.
[37] Ken Ono,et al. Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms , 2011, 1104.1182.
[38] H. Rademacher,et al. Theorems on Dedekind Sums , 1941 .
[39] Alfred V. Aho,et al. Evaluating Polynomials at Fixed Sets of Points , 1975, SIAM J. Comput..
[40] Juan Arias de Reyna,et al. Asymptotics of Keiper-Li coefficients , 2011 .
[41] J. Keiper,et al. Power series expansions of Riemann’s function , 1992 .
[42] Wolfram Koepf,et al. Efficient Computation of Chebyshev Polynomials in Computer Algebra , 2003 .
[43] Fredrik Johansson,et al. A bound for the error term in the Brent-McMillan algorithm , 2013, Math. Comput..
[44] Ghaith Ayesh Hiary,et al. Fast methods to compute the Riemann zeta function , 2007, 0711.5005.
[45] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[46] Robert L. Probert. On the Additive Complexity of Matrix Multiplication , 1976, SIAM J. Comput..
[47] Arnold Schönhage,et al. Fast algorithms for multiple evaluations of the riemann zeta function , 1988 .
[48] Hans Rademacher,et al. On the Partition Function p(n) , 1938 .
[49] C. Knessl,et al. AN ASYMPTOTIC FORM FOR THE STIELTJES CONSTANTS γk(a) AND FOR A SUM Sγ(n) APPEARING UNDER THE LI CRITERION , 2011 .
[50] Tony Feng,et al. Riemann's Zeta Function , 2014 .
[51] Fredrik Johansson,et al. Arb: a C library for ball arithmetic , 2014, ACCA.
[52] Carl-Erik Fröberg,et al. The Stieltjes function—definition and properties , 1988 .
[53] D. V. Chudnovsky,et al. Approximations and complex multiplication according to Ramanujan , 2000 .
[54] F. Olver. Asymptotics and Special Functions , 1974 .
[55] Christopher Umans,et al. Fast Polynomial Factorization and Modular Composition , 2011, SIAM J. Comput..
[56] Mark W. Coffey,et al. An efficient algorithm for the Hurwitz zeta and related functions , 2009 .
[57] Donald Ervin Knuth,et al. The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .
[58] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[59] Éric Schost,et al. Power series composition and change of basis , 2008, ISSAC '08.
[60] William B. Hart,et al. Fast Library for Number Theory: An Introduction , 2010, ICMS.
[61] P. Hagis. A root of unity occurring in partition theory , 1970 .
[62] REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION , 2004 .
[63] R. Weaver. New Congruences for the Partition Function , 2001 .
[64] D. J. Bernstein. Fast multiplication and its applications , 2008 .
[65] Richard P. Brent,et al. Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.
[66] THE MPFR LIBRARY: ALGORITHMS AND PROOFS , 2006 .
[67] Fredrik Johansson,et al. Rigorous high-precision computation of the Hurwitz zeta function and its derivatives , 2013, Numerical Algorithms.
[68] Manuel Kauers,et al. Automatic Classification of Restricted Lattice Walks , 2008, 0811.2899.
[69] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[70] Xian-jin Li,et al. The Positivity of a Sequence of Numbers and the Riemann Hypothesis , 1997 .
[71] Victor Y. Pan,et al. Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..
[72] Marc Mezzarobba,et al. Autour de l'évaluation numérique des fonctions D-finies , 2011 .
[73] On the series for the partition function , 1938 .
[74] A. Odlyzko. Asymptotic enumeration methods , 1996 .
[75] D. H. Lehmer. A Note on Trigonometric Algebraic Numbers , 1933 .
[76] H. T. Kung,et al. Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.
[77] Sven Köhler,et al. On the Stability of Fast Polynomial Arithmetic , 2008 .
[78] Richard P. Brent,et al. Fast computation of Bernoulli, Tangent and Secant numbers , 2011, ArXiv.
[79] Larry J. Stockmeyer,et al. On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials , 1973, SIAM J. Comput..
[80] E. A. Karatsuba. FAST EVALUATION OF THE HURWITZ ZETA FUNCTION AND DIRICHLET L-SERIES , 1998 .
[81] Richard P. Brent,et al. The Complexity of computational problem solving , 1976 .
[82] Albert Leon Whiteman,et al. A SUM CONNECTED WITH THE SERIES FOR THE PARTITION FUNCTION , 1956 .
[83] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[84] Jonathan M. Borwein,et al. Computational strategies for the Riemann zeta function , 2000 .
[85] Jean-Michel Muller,et al. Modern Computer Arithmetic , 2016, Computer.
[86] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[87] On the Hardy-Ramanujan Series for the Partition Function , 1937 .
[88] G. Hardy,et al. Asymptotic formulae in combinatory analysis , 1918 .