Lie n-algebras of BPS charges
暂无分享,去创建一个
[1] Christopher L. Rogers,et al. L ∞ -ALGEBRAS OF LOCAL OBSERVABLES FROM HIGHER PREQUANTUM BUNDLES , 2017 .
[2] Christopher L. Rogers,et al. Higher U(1)-gerbe connections in geometric prequantization , 2013, 1304.0236.
[3] B. Janssens. Loop groups , 2016 .
[4] D. Fiorenza,et al. The Wess-Zumino-Witten term of the M5-brane and differential cohomotopy , 2015, 1506.07557.
[5] D. Fiorenza,et al. A Higher Stacky Perspective on Chern–Simons Theory , 2013, 1301.2580.
[6] D. Fiorenza,et al. The E8 Moduli 3-Stack of the C-Field in M-Theory , 2012, 1202.2455.
[7] P. Ritter,et al. Lie 2-algebra models , 2013, 1308.4892.
[8] D. Fiorenza,et al. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields , 2013, 1308.5264.
[9] Urs Schreiber,et al. Extended higher cup-Product Chern-Simons theories , 2012, 1207.5449.
[10] M. Ferraris,et al. Local variational problems and conservation laws , 2011 .
[11] H. Sati. GEOMETRIC AND TOPOLOGICAL STRUCTURES RELATED TO M-BRANES II: TWISTED STRING AND STRINGC STRUCTURES , 2010, Journal of the Australian Mathematical Society.
[12] Christopher L. Rogers. L∞-Algebras from Multisymplectic Geometry , 2010, 1005.2230.
[13] Christopher L. Rogers,et al. Categorified symplectic geometry and the string Lie 2-algebra , 2009, 0901.4721.
[14] H. Sati,et al. L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.
[15] H. Sati. An approach to anomalies in M-theory via KSpin , 2007, 0705.3484.
[16] M. Atiyah,et al. Twisted K-theory and cohomology , 2005, math/0510674.
[17] H. Sati. Duality Symmetry and the Form Fields of M-theory , 2005, hep-th/0509046.
[18] D. Alekseevsky,et al. Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.
[19] L. Dickey. Soliton Equations and Hamiltonian Systems , 2003 .
[20] J. Maldacena,et al. D-Brane Instantons and K-Theory Charges , 2001, hep-th/0108100.
[21] J. M. Izquierdo,et al. The geometry of branes and extended superspaces , 1999, hep-th/9904137.
[22] A. Bocharov,et al. Symmetries and conservation laws for differential equations of mathematical physics , 1999 .
[23] M. Markl,et al. Differential Operator Endomorphisms of an Euler-Lagrange Complex , 1998, math/9808105.
[24] C. Hull. Gravitational duality, branes and charges , 1997, hep-th/9705162.
[25] R. Fulp,et al. The sh Lie Structure of Poisson Brackets in Field Theory , 1997, hep-th/9702176.
[26] M. Henneaux,et al. Isomorphisms between the Batalin–Vilkovisky antibracket and the Poisson bracket , 1996, hep-th/9601124.
[27] P. Townsend. P-brane democracy , 1995, hep-th/9507048.
[28] Jean-Luc Brylinski,et al. Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .
[29] J. Stasheff,et al. Introduction to SH Lie algebras for physicists , 1992, hep-th/9209099.
[30] Townsend,et al. Topological extensions of the supersymmetry algebra for extended objects. , 1989, Physical review letters.
[31] J. Mickelsson. Current Algebras and Groups , 1989 .
[32] E. Sezgin,et al. Supermembranes and Eleven-Dimensional Supergravity , 1987 .
[33] E. Sezgin,et al. Superstring actions in D = 3,4,6,10 curved superspace , 1986 .
[34] M. Henneaux,et al. A σ-model interpretation of Green-Schwarz covariant superstring action , 1985 .
[35] P. Fré,et al. Geometric Supergravity in D = 11 and Its Hidden Supergroup , 1981 .