Lie n-algebras of BPS charges

[1]  Christopher L. Rogers,et al.  L ∞ -ALGEBRAS OF LOCAL OBSERVABLES FROM HIGHER PREQUANTUM BUNDLES , 2017 .

[2]  Christopher L. Rogers,et al.  Higher U(1)-gerbe connections in geometric prequantization , 2013, 1304.0236.

[3]  B. Janssens Loop groups , 2016 .

[4]  D. Fiorenza,et al.  The Wess-Zumino-Witten term of the M5-brane and differential cohomotopy , 2015, 1506.07557.

[5]  D. Fiorenza,et al.  A Higher Stacky Perspective on Chern–Simons Theory , 2013, 1301.2580.

[6]  D. Fiorenza,et al.  The E8 Moduli 3-Stack of the C-Field in M-Theory , 2012, 1202.2455.

[7]  P. Ritter,et al.  Lie 2-algebra models , 2013, 1308.4892.

[8]  D. Fiorenza,et al.  Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields , 2013, 1308.5264.

[9]  Urs Schreiber,et al.  Extended higher cup-Product Chern-Simons theories , 2012, 1207.5449.

[10]  M. Ferraris,et al.  Local variational problems and conservation laws , 2011 .

[11]  H. Sati GEOMETRIC AND TOPOLOGICAL STRUCTURES RELATED TO M-BRANES II: TWISTED STRING AND STRINGC STRUCTURES , 2010, Journal of the Australian Mathematical Society.

[12]  Christopher L. Rogers L∞-Algebras from Multisymplectic Geometry , 2010, 1005.2230.

[13]  Christopher L. Rogers,et al.  Categorified symplectic geometry and the string Lie 2-algebra , 2009, 0901.4721.

[14]  H. Sati,et al.  L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport , 2008, 0801.3480.

[15]  H. Sati An approach to anomalies in M-theory via KSpin , 2007, 0705.3484.

[16]  M. Atiyah,et al.  Twisted K-theory and cohomology , 2005, math/0510674.

[17]  H. Sati Duality Symmetry and the Form Fields of M-theory , 2005, hep-th/0509046.

[18]  D. Alekseevsky,et al.  Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.

[19]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[20]  J. Maldacena,et al.  D-Brane Instantons and K-Theory Charges , 2001, hep-th/0108100.

[21]  J. M. Izquierdo,et al.  The geometry of branes and extended superspaces , 1999, hep-th/9904137.

[22]  A. Bocharov,et al.  Symmetries and conservation laws for differential equations of mathematical physics , 1999 .

[23]  M. Markl,et al.  Differential Operator Endomorphisms of an Euler-Lagrange Complex , 1998, math/9808105.

[24]  C. Hull Gravitational duality, branes and charges , 1997, hep-th/9705162.

[25]  R. Fulp,et al.  The sh Lie Structure of Poisson Brackets in Field Theory , 1997, hep-th/9702176.

[26]  M. Henneaux,et al.  Isomorphisms between the Batalin–Vilkovisky antibracket and the Poisson bracket , 1996, hep-th/9601124.

[27]  P. Townsend P-brane democracy , 1995, hep-th/9507048.

[28]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[29]  J. Stasheff,et al.  Introduction to SH Lie algebras for physicists , 1992, hep-th/9209099.

[30]  Townsend,et al.  Topological extensions of the supersymmetry algebra for extended objects. , 1989, Physical review letters.

[31]  J. Mickelsson Current Algebras and Groups , 1989 .

[32]  E. Sezgin,et al.  Supermembranes and Eleven-Dimensional Supergravity , 1987 .

[33]  E. Sezgin,et al.  Superstring actions in D = 3,4,6,10 curved superspace , 1986 .

[34]  M. Henneaux,et al.  A σ-model interpretation of Green-Schwarz covariant superstring action , 1985 .

[35]  P. Fré,et al.  Geometric Supergravity in D = 11 and Its Hidden Supergroup , 1981 .