The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions—a model test for the survival capacity of an eukaryotic extremophile

Abstract The “Planetary Atmospheres and Surfaces Chamber” (PASC, at Centro de Astrobiologia, INTA, Madrid) is able to simulate the atmosphere and surface temperature of most of the solar system planets. PASC is especially appropriate to study irradiation induced changes of geological, chemical, and biological samples under a wide range of controlled atmospheric and temperature conditions. Therefore, PASC is a valid method to test the resistance potential of extremophile organisms under diverse harsh conditions and thus assess the habitability of extraterrestrial environments. In the present study, we have investigated the resistance of a symbiotic organism under simulated Mars conditions, exemplified with the lichen Circinaria gyrosa —an extremophilic eukaryote. After 120 hours of exposure to simulated but representative Mars atmosphere, temperature, pressure and UV conditions; an unaltered photosynthetic performance demonstrated high resistance of the lichen photobiont.

[1]  W. Feldman,et al.  Simulations of atmospheric phenomena at the Phoenix landing site with the Ames General Circulation Model , 2010 .

[2]  G. Horneck,et al.  Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments , 2010 .

[3]  Elke Rabbow,et al.  BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem , 2007 .

[4]  G. Horneck,et al.  The potential of the lichen symbiosis to cope with extreme conditions of outer space – I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity , 2002, International Journal of Astrobiology.

[5]  R. Mack,et al.  Mars ultraviolet simulation facility , 1979, Journal of Molecular Evolution.

[6]  C. Duarte,et al.  Effects of ultraviolet B radiation on (not so) transparent exopolymer particles , 2009 .

[7]  V. R. Baker,et al.  Ancient oceans, ice sheets and the hydrological cycle on Mars , 1991, Nature.

[8]  G Horneck,et al.  The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[9]  M. Grube,et al.  Symbioses and stress : joint ventures in biology , 2010 .

[10]  F. Valladares,et al.  Functional Analysis of the Intrathalline and Intracellular Chlorophyll Concentrations in the Lichen Family Umbilicariaceae , 1996 .

[11]  I. Brodo,et al.  Lichens of North America , 2002 .

[12]  Gerda Horneck,et al.  Responses ofBacillus subtilis spores to space environment: Results from experiments in space , 1993, Origins of life and evolution of the biosphere.

[13]  S. Ott,et al.  Resistance of symbiotic eukaryotes: survival to simulated space conditions and asteroid impact cataclysms , 2010 .

[14]  James Garry,et al.  Analysis and survival of amino acids in Martian regolith analogs , 2006 .

[15]  J. Tillman Mars global atmospheric oscillations - Annually synchronized, transient normal-mode oscillations and the triggering of global dust storms , 1988 .

[16]  Eva Mateo-Martí,et al.  Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions , 2010 .

[17]  F. Valladares,et al.  Photosynthetic Performance of Two Closely Related Umbilicaria Species in Central Spain: Temperature as a Key Factor , 1997, The Lichenologist.

[18]  Aviaja Anna Hansen,et al.  A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH). , 2008, Astrobiology.

[19]  W. Nicholson,et al.  Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia. , 2005, Astrobiology.

[20]  M. Sohrabi Taxonomy and phylogeny of the manna lichens and allied species (Megasporaceae) , 2012 .

[21]  María-Paz Zorzano,et al.  Stability of liquid saline water on present day Mars , 2009 .

[22]  Tobias Owen,et al.  The composition and early history of the atmosphere of Mars , 1992 .

[23]  S. McKeever,et al.  Investigation of biological, chemical and physical processes on and in planetary surfaces by laboratory simulation , 2002 .

[24]  Charles Cockell,et al.  New priorities in the robotic exploration of Mars: the case for in situ search for extant life. , 2010, Astrobiology.

[25]  Michael H. Carr,et al.  Mars: A water-rich planet? , 1986 .

[26]  R. Lázaro,et al.  Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. , 2005, The Lichenologist.

[27]  G. Horneck Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. , 1995, Planetary and space science.

[28]  G. Horneck The microbial world and the case for Mars , 2000 .

[29]  Andreas Lorek,et al.  Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study. , 2010, Astrobiology.

[30]  L. Kappen Ecology and physiology of the Antarctic fruticose lichen Usnea sulphurea (Koenig) Th. Fries , 1983, Polar Biology.

[31]  Elke Rabbow,et al.  Survival of rock-colonizing organisms after 1.5 years in outer space. , 2012, Astrobiology.

[32]  R. M. Henry,et al.  Meteorological results from the surface of Mars: Viking 1 and 2 , 1977 .

[33]  Kenneth L. Tanaka The stratigraphy of Mars , 1986 .

[34]  G. Horneck Exobiological Experiments in Earth Orbit , 1998 .

[35]  Raymond E. Arvidson,et al.  Explosive erosion during the Phoenix landing exposes subsurface water on Mars , 2011 .

[36]  G. Horneck,et al.  Whole lichen thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa. , 2011, Astrobiology.

[37]  C. Estournel,et al.  Observation and modeling of the winter coastal oceanic circulation in the Gulf of Lion under wind conditions influenced by the continental orography (FETCH experiment) , 2003 .

[38]  J. Zarnecki,et al.  Annual solar UV exposure and biological effective dose rates on the Martian surface. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[39]  Nathan T. Bridges,et al.  Near‐surface temperatures at proposed Mars Exploration Rover landing sites , 2003 .

[40]  David J Smith,et al.  Survivability of Psychrobacter cryohalolentis K5 under simulated martian surface conditions. , 2009, Astrobiology.

[41]  A. I. Zhukova,et al.  On artificial Martian conditions reproduced for microbiological research. , 1965, Life sciences and space research.

[42]  W. Bilger,et al.  Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis , 1994 .

[43]  T. Green,et al.  Ecology of endolithic lichens colonizing granite in continental Antarctica , 2005, The Lichenologist.

[44]  Kenneth L. Tanaka,et al.  Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life. , 2005, Astrobiology.

[45]  J. Tillman,et al.  Observations of Martian surface winds at the Viking Lander 1 Site , 1990 .

[46]  Javier Gómez-Elvira,et al.  A chamber for studying planetary environments and its applications to astrobiology , 2006 .

[47]  G. Horneck,et al.  Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions , 2008, Studies in mycology.

[48]  J. Martínez-Frías,et al.  Near-UV Transmittance of Basalt Dust as an Analog of the Martian Regolith: Implications for Sensor Calibration and Astrobiology , 2006, Sensors (Basel, Switzerland).

[49]  C. Cockell,et al.  Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions , 2009, Origins of Life and Evolution of Biospheres.

[50]  R. Torre,et al.  Lichens, new and promising material from experiments in astrobiology , 2008 .

[51]  G. Horneck,et al.  Lichens survive in space: results from the 2005 LICHENS experiment. , 2007, Astrobiology.

[52]  S. Ott,et al.  Resistance of Symbiotic Eukaryotes , 2010 .

[53]  G. Reitz,et al.  Long-term survival of bacterial spores in space. , 1994, Advances in space research : the official journal of the Committee on Space Research.

[54]  T. Green,et al.  High diversity of lichens at 84°S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica , 2011, Polar Biology.

[55]  C. McKay,et al.  The Search for Life on Mars , 2010 .

[56]  S. Debei,et al.  S.A.M., the Italian Martian Simulation Chamber , 2007, Origins of Life and Evolution of Biospheres.