A nonconforming Trefftz virtual element method for the Helmholtz problem
暂无分享,去创建一个
[1] Emilio Gagliardo,et al. Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili , 1957 .
[2] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[3] J. H. Bramble,et al. Bounds in the Neumann problem for second order uniformly elliptic operators , 1962 .
[4] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[5] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[6] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[7] Majorations de la constante de poincaré relative au problème de la membrane-domaines étoilés , 1978 .
[8] Tom Carroll,et al. Brownian motion and the fundamental frequency of a drum , 1994 .
[9] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[10] O. Cessenat,et al. Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .
[11] Peter Monk,et al. A least-squares method for the Helmholtz equation , 1999 .
[12] C. Farhat,et al. The Discontinuous Enrichment Method , 2000 .
[13] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[14] Susanne C. Brenner,et al. Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..
[15] Pierre Ladevèze,et al. THE MULTISCALE VTCR APPROACH APPLIED TO ACOUSTICS PROBLEMS , 2008 .
[16] Ralf Hiptmair,et al. PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .
[17] L. Evans,et al. Partial Differential Equations , 1941 .
[18] Ralf Hiptmair,et al. Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..
[19] Ralf Hiptmair,et al. Plane wave approximation of homogeneous Helmholtz solutions , 2011 .
[20] A. Moiola. Trefftz-discontinuous Galerkin methods for time-harmonic wave problems , 2011 .
[21] G. Paulino,et al. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .
[22] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[23] K. Lipnikov,et al. The nonconforming virtual element method , 2014, 1405.3741.
[24] Stefano Berrone,et al. The virtual element method for discrete fracture network simulations , 2014 .
[25] Wim Desmet,et al. The wave based method: An overview of 15 years of research , 2014 .
[26] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[27] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[28] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[29] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[30] Ralf Hiptmair,et al. A Survey of Trefftz Methods for the Helmholtz Equation , 2015, 1506.04521.
[31] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[32] P. F. Antonietti,et al. The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.
[33] Charles L. Epstein,et al. Smoothed Corners and Scattered Waves , 2015, SIAM J. Sci. Comput..
[34] Gianmarco Manzini,et al. The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..
[35] Shaochun Chen,et al. The nonconforming virtual element method for plate bending problems , 2016 .
[36] Lorenzo Mascotto,et al. Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.
[37] Franco Dassi,et al. High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..
[38] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .
[39] Lorenzo Mascotto,et al. The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains , 2017, IMA Journal of Numerical Analysis.
[40] Susanne C. Brenner,et al. Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.
[41] Ilaria Perugia,et al. Non-conforming Harmonic Virtual Element Method: $$h$$h- and $$p$$p-Versions , 2018, J. Sci. Comput..
[42] L. Mascotto. THE HP VERSION OF THE VIRTUAL ELEMENT METHOD , 2018 .
[43] Gianmarco Manzini,et al. The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[44] L. Mascotto,et al. A nonconforming Trefftz virtual element method for the Helmholtz problem: Numerical aspects , 2018, Computer Methods in Applied Mechanics and Engineering.
[45] Xin Liu,et al. The nonconforming virtual element method for the Navier-Stokes equations , 2018, Advances in Computational Mathematics.
[46] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.