A nonconforming Trefftz virtual element method for the Helmholtz problem

We introduce a novel virtual element method (VEM) for the two-dimensional Helmholtz problem endowed with impedance boundary conditions. Local approximation spaces consist of Trefftz functions, i.e. functions belonging to the kernel of the Helmholtz operator. The global trial and test spaces are not fully discontinuous, but rather interelement continuity is imposed in a nonconforming fashion. Although their functions are only implicitly defined, as typical of the VEM framework, they contain discontinuous subspaces made of functions known in closed form and with good approximation properties (plane-waves, in our case). We carry out an abstract error analysis of the method, and derive [Formula: see text]-version error estimates. Moreover, we initiate its numerical investigation by presenting a first test, which demonstrates the theoretical convergence rates.

[1]  Emilio Gagliardo,et al.  Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili , 1957 .

[2]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[3]  J. H. Bramble,et al.  Bounds in the Neumann problem for second order uniformly elliptic operators , 1962 .

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[6]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[7]  Majorations de la constante de poincaré relative au problème de la membrane-domaines étoilés , 1978 .

[8]  Tom Carroll,et al.  Brownian motion and the fundamental frequency of a drum , 1994 .

[9]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[10]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[11]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[12]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[13]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[14]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[15]  Pierre Ladevèze,et al.  THE MULTISCALE VTCR APPROACH APPLIED TO ACOUSTICS PROBLEMS , 2008 .

[16]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[17]  L. Evans,et al.  Partial Differential Equations , 1941 .

[18]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[19]  Ralf Hiptmair,et al.  Plane wave approximation of homogeneous Helmholtz solutions , 2011 .

[20]  A. Moiola Trefftz-discontinuous Galerkin methods for time-harmonic wave problems , 2011 .

[21]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[22]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[23]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[24]  Stefano Berrone,et al.  The virtual element method for discrete fracture network simulations , 2014 .

[25]  Wim Desmet,et al.  The wave based method: An overview of 15 years of research , 2014 .

[26]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[27]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[28]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[29]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[30]  Ralf Hiptmair,et al.  A Survey of Trefftz Methods for the Helmholtz Equation , 2015, 1506.04521.

[31]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[32]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[33]  Charles L. Epstein,et al.  Smoothed Corners and Scattered Waves , 2015, SIAM J. Sci. Comput..

[34]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[35]  Shaochun Chen,et al.  The nonconforming virtual element method for plate bending problems , 2016 .

[36]  Lorenzo Mascotto,et al.  Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.

[37]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[38]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[39]  Lorenzo Mascotto,et al.  The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains , 2017, IMA Journal of Numerical Analysis.

[40]  Susanne C. Brenner,et al.  Virtual element methods on meshes with small edges or faces , 2017, Mathematical Models and Methods in Applied Sciences.

[41]  Ilaria Perugia,et al.  Non-conforming Harmonic Virtual Element Method: $$h$$h- and $$p$$p-Versions , 2018, J. Sci. Comput..

[42]  L. Mascotto THE HP VERSION OF THE VIRTUAL ELEMENT METHOD , 2018 .

[43]  Gianmarco Manzini,et al.  The nonconforming Virtual Element Method for eigenvalue problems , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[44]  L. Mascotto,et al.  A nonconforming Trefftz virtual element method for the Helmholtz problem: Numerical aspects , 2018, Computer Methods in Applied Mechanics and Engineering.

[45]  Xin Liu,et al.  The nonconforming virtual element method for the Navier-Stokes equations , 2018, Advances in Computational Mathematics.

[46]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.