Theoretical and experimental analysis of phase diagrams and related dynamical properties in the Belousov–Zhabotinskii system

It is shown on the basis of a semiquantitative dynamical analysis and full nonlinear computations that the irreversible Oregonator with flux conditions exhibits a characteristic cross‐shaped phase diagram which expresses the relationships between bistability and periodicity. The results are in good agreement with a whole set of new experiments on the Belousov–Zhabotinskii reaction performed in a continuous stirred tank reactor.

[1]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[2]  J. Boissonade,et al.  Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system , 1980 .

[3]  J. Roux,et al.  Quantitative measurement of intermediate species in sustained Belousov-Zhabotinskii oscillations , 1980 .

[4]  W Geiseler,et al.  Three steady state situation in an open chemical reaction system I. , 1977, Biophysical chemistry.

[5]  J. Tyson On the appearance of chaos in a model of the Belousov reaction , 1977 .

[6]  T. Briggs,et al.  An oscillating iodine clock , 1973 .

[7]  Kenneth Showalter,et al.  A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system , 1978 .

[8]  Roger A. Schmitz,et al.  Multiplicity, Stability, and Sensitivity of States in Chemically Reacting Systems—A Review , 1975 .

[9]  J. Boissonade Aspects théoriques de la « double oscillation » dans les systèmes dissipatifs chimiques , 1976 .

[10]  Britton Chance,et al.  Biological and biochemical oscillators , 1973 .

[11]  John J. Tyson,et al.  The Belousov–Zhabotinskii reaction’ , 1976, Nature.

[12]  Abraham Nitzan,et al.  Fluctuations and transitions at chemical instabilities: The analogy to phase transitions , 1974 .

[13]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[14]  R. M. Noyes,et al.  Oscillations in chemical systems. IX. Reactions of cerium(IV) with malonic acid and its derivatives , 1975 .

[15]  M. Smoes Period of homogeneous oscillations in the ferroin‐catalyzed Zhabotinskii system , 1979 .

[16]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[17]  J. Boissonade,et al.  Phenomena in homogeneous chemical systems far from equilibrium , 1976 .

[18]  J. Callot,et al.  Chasse au canard , 1977 .

[19]  R. M. Noyes,et al.  Mechanistic details of the Belousov–Zhabotinskii oscillations , 1975 .