Changes in Human Cerebral Blood Flow and Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission Tomography

Hypercapnia induces cerebral vasodilation and increases cerebral blood flow (CBF), and hypocapnia induces cerebral vasoconstriction and decreases CBF. The relation between changes in CBF and cerebral blood volume (CBV) during hypercapnia and hypocapnia in humans, however, is not clear. Both CBF and CBV were measured at rest and during hypercapnia and hypocapnia in nine healthy subjects by positron emission tomography. The vascular responses to hypercapnia in terms of CBF and CBV were 6.0 ± 2.6%/mm Hg and 1.8 ± 1.3%/mm Hg, respectively, and those to hypocapnia were −3.5 ± 0.6%/mm Hg and −1.3 ± 1.0%/mm Hg, respectively. The relation between CBF and CBV was CBV = 1.09 CBF0.29. The increase in CBF was greater than that in CBV during hypercapnia, indicating an increase in vascular blood velocity. The degree of decrease in CBF during hypocapnia was greater than that in CBV, indicating a decrease in vascular blood velocity. The relation between changes in CBF and CBV during hypercapnia was similar to that during neural activation; however, the relation during hypocapnia was different from that during neural deactivation observed in crossed cerebellar diaschisis. This suggests that augmentation of CBF and CBV might be governed by a similar microcirculatory mechanism between neural activation and hypercapnia, but diminution of CBF and CBV might be governed by a different mechanism between neural deactivation and hypocapnia.

[1]  H. Fukuyama,et al.  Hemodynamic and Metabolic Changes in Crossed Cerebellar Hypoperfusion , 1992, Stroke.

[2]  M E Phelps,et al.  Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin. , 1979, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  I Kanno,et al.  Noninvasive quantitation of cerebral blood flow using oxygen-15-water and a dual-PET system. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[4]  R J Wise,et al.  Correction for the Presence of Intravascular Oxygen-15 in the Steady-State Technique for Measuring Regional Oxygen Extraction Ratio in the Brain: 2. Results in Normal Subjects and Brain Tumour and Stroke Patients , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  S. Kety,et al.  THE EFFECTS OF ALTERED ARTERIAL TENSIONS OF CARBON DIOXIDE AND OXYGEN ON CEREBRAL BLOOD FLOW AND CEREBRAL OXYGEN CONSUMPTION OF NORMAL YOUNG MEN. , 1948, The Journal of clinical investigation.

[6]  Iwao Kanno,et al.  Hemodynamic changes during neural deactivation in human brain: A positron emission tomography study of crossed cerebellar diaschisis , 2002, Annals of nuclear medicine.

[7]  Karl J. Friston,et al.  The Relationship between Global and Local Changes in PET Scans , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  J. Dobkin,et al.  Blood flow reactivity to hypercapnia in strictly unilateral carotid disease: preliminary results. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[9]  I Kanno,et al.  Regional Differences in Cerebral Vascular Response to Paco2 Changes in Humans Measured by Positron Emission Tomography , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  A. Keyeux,et al.  Induced Response to Hypercapnia in the Two-Compartment Total Cerebral Blood Volume: Influence on Brain Vascular Reserve and Flow Efficiency , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  S G Kim,et al.  Changes in Human Regional Cerebral Blood Flow and Cerebral Blood Volume during Visual Stimulation Measured by Positron Emission Tomography , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  R S Frackowiak,et al.  Assessment of cerebral haemodynamic reserve: correlation between PET parameters and CO2 reactivity measured by the intravenous 133 xenon injection technique. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[13]  F Shishido,et al.  A System for Cerebral Blood Flow Measurement Using an H215O Autoradiographic Method and Positron Emission Tomography , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  A A Lammertsma,et al.  Correction for the Presence of Intravascular Oxygen-15 in the Steady-State Technique for Measuring Regional Oxygen Extraction Ratio in the Brain: 1. Description of the Method , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  M. Raichle,et al.  Physiological responses to focal cerebral ischemia in humans , 1984, Annals of neurology.

[16]  Y Ichiya,et al.  Response to hypercapnia in moyamoya disease. Cerebrovascular response to hypercapnia in pediatric and adult patients with moyamoya disease. , 1997, Stroke.

[17]  W. Kuschinsky,et al.  Lack of Capillary Recruitment in the Brains of Awake Rats during Hypercapnia , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  Seong-Gi Kim,et al.  Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: Implications for BOLD fMRI , 2001, Magnetic resonance in medicine.

[19]  M. Raichle,et al.  The Effects of Changes in PaCO2 Cerebral Blood Volume, Blood Flow, and Vascular Mean Transit Time , 1974, Stroke.

[20]  John L. Patterson,et al.  Response of Pial Precapillary Vessels to Changes in Arterial Carbon Dioxide Tension , 1971 .

[21]  R. Duelli,et al.  Changes in Brain Capillary Diameter during Hypocapnia and Hypercapnia , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  M. Mintun,et al.  Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. , 1984, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  Peter Herscovitch,et al.  Brain blood flow measured with intravenous H/sub 2//sup 15/O. I. Theory and error analysis , 1983 .

[24]  F. Shishido,et al.  Oxygen Extraction Fraction at Maximally Vasodilated Tissue in the Ischemic Brain Estimated from the Regional CO2 Responsiveness Measured by Positron Emission Tomography , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  I. Kanno,et al.  Error Analysis of a Quantitative Cerebral Blood Flow Measurement Using H215O Autoradiography and Positron Emission Tomography, with Respect to the Dispersion of the Input Function , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  K. Lynch,et al.  Responses to sphingosine-1-phosphate in X. laevis oocytes: similarities with lysophosphatidic acid signaling. , 1993, The American journal of physiology.

[27]  Martin Lauritzen,et al.  Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Patlak,et al.  Hypercapnia slightly raises blood volume and sizably elevates flow velocity in brain microvessels. , 1993, The American journal of physiology.

[29]  Iwao Kanno,et al.  A New PET Camera for Noninvasive Quantitation of Physiological Functional Parametric Images , 1996 .

[30]  M. Mintun,et al.  Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  F. Shishido,et al.  Evaluation of Regional Differences of Tracer Appearance Time in Cerebral Tissues Using [15O]Water and Dynamic Positron Emission Tomography , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.