Developing nacre-inspired laminate-reticular 2024Al/B4C composites with high damage resistance by adjusting compositional wettability

[1]  A. Abdollahi,et al.  Wear behavior and dry sliding tribological properties of ultra-fine grained Al5083 alloy and boron carbide-reinforced Al5083-based composite at room and elevated temperatures , 2021 .

[2]  P. Shen,et al.  Synthesis of damage-tolerant Cu-matrix composites with nacre-inspired laminate-reticular hierarchical architecture via tuning compositional wettability , 2020 .

[3]  Yang Wang,et al.  Controlling the structure and mechanical properties of porous B4C ceramics with unidirectionally aligned channels using sintering additives , 2020 .

[4]  A. L. Ortiz,et al.  Improving the dry sliding-wear resistance of B4C ceramics by transient liquid-phase sintering , 2020 .

[5]  Liu Zhang,et al.  Phase transformation and mechanical properties of B4C/Al composites , 2020 .

[6]  Frances Y. Su,et al.  Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs , 2019, Advanced materials.

[7]  N. Murugan,et al.  Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti−6Al−4V alloy using friction surfacing , 2019, Transactions of Nonferrous Metals Society of China.

[8]  H. Le Ferrand,et al.  Transparent and tough bulk composites inspired by nacre , 2019, Nature Communications.

[9]  Q. Jiang,et al.  A novel approach to the fabrication of lamellar Al2O3/6061Al composites with high-volume fractions of hard phases , 2019, Materials Science and Engineering: A.

[10]  J. Qiao,et al.  The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction , 2019, Composites Part B: Engineering.

[11]  Q. Jiang,et al.  Optimization of the properties in Al/SiC composites by tailoring microstructure through gelatin freeze casting , 2019, Materials Science and Engineering: A.

[12]  R. Ritchie,et al.  Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase , 2019, Nature Communications.

[13]  R. Ritchie,et al.  Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton , 2019, ACS Applied Nano Materials.

[14]  Q. Jiang,et al.  The role of TiO2 incorporation in the preparation of B4C/Al laminated composites with high strength and toughness , 2018, Ceramics International.

[15]  Tongmin Wang,et al.  Effect of B4C particle size on the mechanical properties of B4C reinforced aluminum matrix layered composite , 2018, Science and Engineering of Composite Materials.

[16]  A. H. Daei-Sorkhabi,et al.  Microstructural and mechanical behavior of blended powder semisolid formed Al7075/B 4 C composites under different experimental conditions , 2018, Transactions of Nonferrous Metals Society of China.

[17]  M. Minary‐Jolandan,et al.  Bioinspired Nacre‐Like Ceramic with Nickel Inclusions Fabricated by Electroless Plating and Spark Plasma Sintering , 2018 .

[18]  Zhihui Zhang,et al.  Study on the Mechanical Properties of Bionic Coupling Layered B4C/5083Al Composite Materials , 2018, Materials.

[19]  J. Chevalier,et al.  Strong and tough metal/ceramic micro‐laminates , 2018 .

[20]  Q. Jiang,et al.  High damage-tolerance bio-inspired ZL205A/SiC composites with a lamellar-interpenetrated structure , 2017 .

[21]  Chaobo Huang,et al.  Boron- and nitrogen-doped photoluminescent polymer carbon nanoparticles as nanosensors for imaging detection of Cu2+ and biothiols in living cells , 2017 .

[22]  Shuhong Yu,et al.  Mass production of bulk artificial nacre with excellent mechanical properties , 2017, Nature Communications.

[23]  H. Che,et al.  Microstructure and mechanical properties of B4C-TiB2-SiC composites toughened by composite structural toughening phases , 2017 .

[24]  Q. Jiang,et al.  Lamellar-interpenetrated Al−Si−Mg/Al2O3−ZrO2 composites prepared by freeze casting and pressureless infiltration , 2017 .

[25]  R. Ritchie,et al.  A Novel Approach to Developing Biomimetic (“Nacre‐Like”) Metal‐Compliant‐Phase (Nickel–Alumina) Ceramics through Coextrusion , 2016, Advanced materials.

[26]  L. Chen,et al.  B4C/Al Composites Processed by Metal-assisted Pressureless Infiltration Technique and its Characterization , 2016 .

[27]  J. Schoenung,et al.  Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix , 2015 .

[28]  Junpin Lin,et al.  Gelcasting of titanium hydride to fabricate low-cost titanium , 2015, Rare Metals.

[29]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[30]  X. Xiong,et al.  Effects of heat treatment on phase contents and mechanical properties of infiltrated B4C/2024Al composites , 2014 .

[31]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[32]  A. Studart Bioinspired ceramics: Turning brittleness into toughness. , 2014, Nature materials.

[33]  Shichao Liu,et al.  Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties , 2014 .

[34]  D. Kocaefe,et al.  Effect of Ti addition on the wettability of Al–B4C metal matrix composites , 2012 .

[35]  Wenshu Yang,et al.  Aging and thermal expansion behavior of Si3N4p/2024Al composite fabricated by pressure infiltration method , 2011 .

[36]  A. Jimoh In-situ particulate-reinforcement of titanium matrix composites with borides , 2011 .

[37]  M. Alizadeh Strengthening mechanisms in particulate Al/B4C composites produced by repeated roll bonding process , 2011 .

[38]  H. Ru,et al.  Microstructure and mechanical properties of B4C-TiB2-Al composites fabricated by vacuum infiltration , 2010 .

[39]  F. Toptan,et al.  The Effect of Ti Addition on the Properties of Al-B4C Interface: A Microstructural Study , 2010 .

[40]  Eduardo Saiz,et al.  A novel biomimetic approach to the design of high-performance ceramic–metal composites , 2010, Journal of The Royal Society Interface.

[41]  H. Ru,et al.  Effect of in situ synthesized TiB2 on the reaction between B4C and Al in a vacuum infiltrated B4C–TiB2–Al composite , 2009 .

[42]  P. He,et al.  Kinetic study on nonisothermal dehydrogenation of TiH2 powders , 2009 .

[43]  R. Oberacker,et al.  Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double‐Side Cooling as a Novel Processing Route , 2009 .

[44]  D. Dunand,et al.  Directionally freeze-cast titanium foam with aligned, elongated pores , 2008 .

[45]  Eduardo Saiz,et al.  Ice-templated porous alumina structures , 2007, 1710.04651.

[46]  A. Deneuville,et al.  Influence of boron concentration on the XPS spectra of the (100) surface of homoepitaxial boron‐doped diamond films , 2006 .

[47]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[48]  Y. Qian,et al.  A convenient solid-state reaction route to nanocrystalline TiB2 , 2004 .

[49]  R. Speyer,et al.  Pressureless Sintering of Boron Carbide , 2003 .

[50]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Kang,et al.  Low-temperature processing of B 4CAl composites via infiltration technique , 2001 .

[52]  C. Garcia-cordovilla,et al.  Pressure infiltration of packed ceramic particulates by liquid metals , 1999 .

[53]  Yi-bing Cheng,et al.  Formation of TiB2–TiC composites by reactive sintering , 1999 .

[54]  B. Derby,et al.  Fracture of metal/ceramic laminates-I. Transition from single to multiple cracking , 1999 .

[55]  B. Derby,et al.  Fracture of metal/ceramic laminates—II. Crack growth resistance and toughness , 1999 .

[56]  William Rafaniello,et al.  Structures and properties of disordered boron carbide coatings generated by magnetron sputtering , 1998 .

[57]  Yonggang Huang,et al.  The role of metal plasticity and interfacial strength in the cracking of metal/ceramic laminates , 1995 .

[58]  A. Pyzik,et al.  Al‐B‐C Phase Development and Effects on Mechanical Properties of B4C/Al‐Derived Composites , 1995 .

[59]  Yonggang Huang,et al.  Multiple cracking in metal-ceramic laminates , 1994 .

[60]  B. J. Keene,et al.  Review of data for the surface tension of pure metals , 1993 .

[61]  H. Déve,et al.  On the toughening of intermetallics with ductile fibers : role of interfaces , 1991 .

[62]  R. Telle,et al.  Strengthening and toughening of boride and carbide hard material composites , 1988 .

[63]  ジェイ ピジク アレクサンダー,et al.  Boron carbide - aluminum and boron carbide - reactive metal cermets , 1986 .

[64]  I. Aksay,et al.  Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al] , 1985 .

[65]  G. Hollenberg,et al.  The Elastic Modulus and Fracture of Boron Carbide , 1980 .

[66]  S. Rhee Wetting of Ceramics by Liquid Aluminum , 1970 .