A laboratory study assessed the impacts of water spray pressure, face ventilation quantity, and line brattice setback distance on respirable dust and SF6 tracer gas concentrations around a continuous mining machine using a sprayfan or directional spray system. Dust levels were measured at locations representing the mining machine operator and the standard and off-standard shuttle car operators, and in the return airway. The results showed that changes in all three independent variables significantly affected log-transformed dust levels at the three operator sampling locations. Changes in setback distance impacted return airway dust levels. Laboratory testing also identified numerous variable interactions affecting dust levels. Tracer gas levels were measured on the left and right sides of the cutting drum and in the return. Untransformed gas levels around the cutting drum were significantly affected by changes in water pressure, face ventilation quantity, and setback distance. Only a few interactions were identified that significantly affected these concentrations. Gas levels in the return airway were grouped by face ventilation quantity. Return gas levels measured at the low curtain quantity were generally unaffected by changes in water pressure or curtain setback distance. At the high curtain quantity, return airway gas levels were affected by curtain setback distance. A field study was conducted to assess the impact of these parameters in an actual mining operation. These data showed that respirable dust levels may have been impacted by a change in water pressure and, to a lesser extent, by an increase in curtain setback distance. A series of tracer gas pulse tests were also conducted during this study. The results showed that effectiveness of the face ventilation was impacted by changes in curtain flow quantity and setback distance. Laboratory testing supported similar conclusions.
[1]
A. Mossman,et al.
Matheson gas data book
,
1971
.
[2]
V. Barnett,et al.
Applied Linear Statistical Models
,
1975
.
[3]
Rutherford Aris,et al.
Elementary Chemical Reactor Analysis
,
1969
.
[4]
Robert A. Jankowski,et al.
Atomization of Water Sprays for Quartz Dust Control
,
1988
.
[5]
Jay F. Colinet,et al.
Interactions and limitations of primary dust controls for continuous miners. Rept. of Investigations/1991
,
1991
.
[6]
S. K. Ruggieri,et al.
Improved diffuser and sprayfan systems for ventilation of coal-mine working faces. Open File report, 23 December 1980-21 March 1985
,
1985
.
[7]
J. Neter,et al.
Applied Linear Statistical Models (3rd ed.).
,
1992
.
[8]
Octave Levenspiel,et al.
The chemical reactor minibook
,
1979
.
[9]
Michael H. Kutner.
Applied Linear Statistical Models
,
1974
.