Binary Field Montgomery Multiplication on Quantum Computers

Optimizing arithmetic operations into quantum circuits to utilize quantum algorithms, such as the Shor algorithm and Grover search algorithm for cryptanalysis, is an active research field in cryptography implementation. In particular, reducing quantum resources is important for efficient implementation. In this paper, binary field (GF (2)) Montgomery multiplication in quantum circuits is presented. We utilize the bit-level Montgomery algorithm to efficiently compute the Montgomery product C = A ·B · r−1 in the binary field GF (2). Additionally, we also present an efficient Montgomery multiplication quantum circuit in the case where the modulus of GF (2) is specified.

[1]  Hwajeong Seo,et al.  Impact of Optimized Operations A· B, A· C for Binary Field Inversion on Quantum Computers , 2020, WISA.

[2]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[3]  Isaac Chuang,et al.  High Performance Quantum Modular Multipliers , 2018, ArXiv.

[4]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[5]  Martin Rötteler,et al.  Factoring using $2n+2$ qubits with Toffoli based modular multiplication , 2016, Quantum Inf. Comput..

[6]  Rainer Steinwandt,et al.  Quantum circuits for 𝔽 2 n -multiplication with subquadratic gate count. , 2015 .

[7]  Daniel J. Bernstein,et al.  Concrete quantum cryptanalysis of binary elliptic curves , 2020, IACR Cryptol. ePrint Arch..

[8]  Martin Rötteler,et al.  Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms , 2017, ASIACRYPT.

[9]  ÇETIN K. KOÇ,et al.  Montgomery Multiplication in GF(2k) , 1998, Des. Codes Cryptogr..

[10]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[11]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  Dooho Choi,et al.  Quantum Modular Multiplication , 2020, IEEE Access.

[14]  Mathias Soeken,et al.  Improved quantum circuits for elliptic curve discrete logarithms , 2020, IACR Cryptol. ePrint Arch..

[15]  Dhiraj K. Pradhan,et al.  On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography , 2007, TQC.

[16]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[17]  Bertrand Georgeot,et al.  How many CNOT gates does it take to generate a three-qubit state ? , 2008 .

[18]  Santa Barbara,et al.  Factoring with n + 2 clean qubits and n − 1 dirty qubits , 2017 .

[19]  Iggy van Hoof Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count , 2019, IACR Cryptol. ePrint Arch..