Cell motility as persistent random motion: theories from experiments.

Experimental time series for trajectories of motile cells may contain so much information that a systematic analysis will yield cell-type-specific motility models. Here we demonstrate how, using human keratinocytes and fibroblasts as examples. The two resulting models reflect the cells' different roles in the organism, it seems, and show that a cell has a memory of past velocities. They also suggest how to distinguish quantitatively between various surfaces' compatibility with the two cell types.

[1]  R. Fürth,et al.  Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien , 1920 .

[2]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[3]  P. Mazur On the theory of brownian motion , 1959 .

[4]  M H Gail,et al.  The locomotion of mouse fibroblasts in tissue culture. , 1970, Biophysical journal.

[5]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[6]  R. Mazo On the theory of brownian motion , 1973 .

[7]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[8]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[9]  G. Dunn,et al.  A Unified Approach to Analysing Cell Motility , 1987, Journal of Cell Science.

[10]  T. Coates,et al.  The fundamental motor of the human neutrophil is not random: evidence for local non-Markov movement in neutrophils. , 1994, Biophysical journal.

[11]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[12]  D. Lauffenburger,et al.  Cell Migration: A Physically Integrated Molecular Process , 1996, Cell.

[13]  M. Sheetz,et al.  Inversely correlated cycles in speed and turning in an ameba: an oscillatory model of cell locomotion. , 1997, Biophysical journal.

[14]  Gargi Maheshwari,et al.  Deconstructing (and reconstructing) cell migration , 1998, Microscopy research and technique.

[15]  A. Czirók,et al.  Exponential Distribution of Locomotion Activity in Cell Cultures , 1998, physics/9902022.

[16]  J. Vacanti,et al.  Tissue engineering: the challenges ahead. , 1999, Scientific American.

[17]  K. Zygourakis,et al.  Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters. , 1999, Biomaterials.

[18]  P. Chaikin,et al.  An elastic analysis of Listeria monocytogenes propulsion. , 2000, Biophysical journal.

[19]  H. Berg Motile Behavior of Bacteria , 2000 .

[20]  Y. Sawada,et al.  Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates , 2001 .

[21]  Mark E. Davis Ordered Porous Materials for Emerging Applications , 2002 .

[22]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[23]  Marina Chicurel,et al.  Cell Migration Research Is on the Move , 2002, Science.

[24]  R. Barbucci,et al.  Cell behaviour on chemically microstructured surfaces , 2003 .

[25]  G. Borisy,et al.  Cell Migration: Integrating Signals from Front to Back , 2003, Science.

[26]  T. Pollard The cytoskeleton, cellular motility and the reductionist agenda , 2003, Nature.

[27]  Stefan Thurner,et al.  Anomalous diffusion on dynamical networks: a model for interacting epithelial cell migration , 2002, cond-mat/0208382.

[28]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[29]  Nikolaj Gadegaard,et al.  Biomimetic Polymer Nanostructures by Injection Molding , 2003 .

[30]  Micah Dembo,et al.  Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. , 2003, Biophysical journal.

[31]  Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion. , 2003, Physical review letters.

[32]  G. Danuser,et al.  Two Distinct Actin Networks Drive the Protrusion of Migrating Cells , 2004, Science.

[33]  G. Oster,et al.  Digital Object Identifier (DOI): , 2000 .

[34]  L. DeFelice E. coli in Motion , 2004, Biological and Medical Physics, Biomedical Engineering.

[35]  Aldo R Boccaccini,et al.  PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. , 2004, Biomaterials.

[36]  G. Parisi Brownian motion , 2005, Nature.