Newton iterations in implicit time-stepping scheme for differential linear complementarity systems

We propose a generalized Newton method for solving the system of nonlinear equations with linear complementarity constraints in the implicit or semi-implicit time-stepping scheme for differential linear complementarity systems (DLCS). We choose a specific solution from the solution set of the linear complementarity constraints to define a locally Lipschitz continuous right-hand-side function in the differential equation. Moreover, we present a simple formula to compute an element in the Clarke generalized Jacobian of the solution function. We show that the implicit or semi-implicit time-stepping scheme using the generalized Newton method can be applied to a class of DLCS including the nondegenerate matrix DLCS and hidden Z-matrix DLCS, and has a superlinear convergence rate. To illustrate our approach, we show that choosing the least-element solution from the solution set of the Z-matrix linear complementarity constraints can define a Lipschitz continuous right-hand-side function with a computable Lipschitz constant. The Lipschitz constant helps us to choose the step size of the time-stepping scheme and guarantee the convergence.

[1]  W. P. M. H. Heemels,et al.  The Complementarity Class of Hybrid Dynamical Systems , 2003, Eur. J. Control.

[2]  T. Friesz Dynamic Optimization and Differential Games , 2010 .

[3]  Jong-Shi Pang,et al.  Solution dependence on initial conditions in differential variational inequalities , 2008, Math. Program..

[4]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[5]  Ya-Xiang Yuan,et al.  Componentwise error bounds for linear complementarity problems , 2011 .

[6]  Daniel Q. Naiman,et al.  A Homological Characterization of Q-Matrices , 1998, Math. Oper. Res..

[7]  Mihai Anitescu,et al.  Convergence of a Class of Semi-Implicit Time-Stepping Schemes for Nonsmooth Rigid Multibody Dynamics , 2008, SIAM J. Optim..

[8]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[9]  Jong-Shi Pang,et al.  Semicopositive linear complementarity systems , 2007 .

[10]  Arjan van der Schaft,et al.  Modelling, Well-Posedness, Stability of Switched Electrical Networks , 2003, HSCC.

[11]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[12]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[13]  Xiaojun Chen,et al.  Perturbation Bounds of P-Matrix Linear Complementarity Problems , 2007, SIAM J. Optim..

[14]  W. Heemels,et al.  On the dynamic analysis of piecewise-linear networks , 2002 .

[15]  E. T. S. E. Telecomunicación The Nonsingular Matrix Completion Problem , 2006 .

[16]  M. Kanat Camlibel,et al.  Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..

[17]  M. Shubik,et al.  Convex structures and economic theory , 1968 .

[18]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[19]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[20]  Zhengyu Wang,et al.  Error Estimation for Nonlinear Complementarity Problems via Linear Systems with Interval Data , 2008 .

[21]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[22]  Xiaojun Chen,et al.  Implicit solution function of P0 and Z matrix linear complementarity constraints , 2011, Math. Program..

[23]  M. Kanat Camlibel,et al.  Lyapunov Stability of Complementarity and Extended Systems , 2006, SIAM J. Optim..

[24]  J. M. Schumacher,et al.  Complementarity systems in optimization , 2004, Math. Program..

[25]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[26]  O. Mangasarian,et al.  Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems , 1987 .

[27]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[28]  M. Çamlibel,et al.  A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.

[29]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[30]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[31]  J. Huisman The Netherlands , 1996, The Lancet.

[32]  Bernard Brogliato,et al.  Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..

[33]  Murad Banaji,et al.  P Matrix Properties, Injectivity, and Stability in Chemical Reaction Systems , 2007, SIAM J. Appl. Math..

[34]  Zhengyu Wang,et al.  Computational error bounds for a differential linear variational inequality , 2012 .

[35]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[36]  Jong-Shi Pang,et al.  Strongly Regular Differential Variational Systems , 2007, IEEE Transactions on Automatic Control.

[37]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[38]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[39]  Uwe Schäfer AN ENCLOSURE METHOD FOR FREE BOUNDARY PROBLEMS BASED ON A LINEAR COMPLEMENTARITY PROBLEM WITH INTERVAL DATA , 2001 .

[40]  I. Konnov Equilibrium Models and Variational Inequalities , 2013 .

[41]  Jong-Shi Pang,et al.  Non-Zenoness of a class of differential quasi-variational inequalities , 2010, Math. Program..