COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS

Motivated by a mean field games stylized model for the choice of technologies (with externalities and economy of scale), we consider the associated optimization problem and prove an existence result. To complement the theoretical result, we introduce a monotonic algorithm to find the mean field equilibria. We close with some numerical results, including the multiplicity of equilibria describing the possibility of a technological transition.

[1]  R. Cooke Real and Complex Analysis , 2011 .

[2]  Giorgio C. Buttazzo,et al.  An Optimization Problem for Mass Transportation with Congested Dynamics , 2009, SIAM J. Control. Optim..

[3]  Julien Salomon,et al.  A monotonic algorithm for the optimal control of the Fokker-Planck equation , 2008, 2008 47th IEEE Conference on Decision and Control.

[4]  Julien Salomon,et al.  A monotonic method for solving nonlinear optimal control problems , 2008, 0906.3361.

[5]  P. Lions,et al.  Mean field games , 2007 .

[6]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[7]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[8]  Yvon Maday,et al.  Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.

[9]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[10]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[11]  J. Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications , 1990 .

[12]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[13]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[14]  M. Freidlin,et al.  Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .

[15]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[16]  J. B. Seaborn Partial Differential Equations , 2002 .

[17]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[18]  L. Evans,et al.  Partial Differential Equations , 2000 .

[19]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[20]  David J. Tannor,et al.  Control of Photochemical Branching: Novel Procedures for Finding Optimal Pulses and Global Upper Bounds , 1992 .

[21]  C. Hirsch Computational methods for inviscid and viscous flows , 1990 .

[22]  R. Dautray,et al.  Méthodes probabilistes pour les équations de la physique , 1989 .

[23]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[24]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[25]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2022 .