Origin of active sites on silica–magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process

[1]  Mingbo Wu,et al.  Direct Conversion of CO2 to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts , 2021, ACS Catalysis.

[2]  J. Gascón,et al.  The Importance of Thermal Treatment on Wet-Kneaded Silica–Magnesia Catalyst and Lebedev Ethanol-to-Butadiene Process , 2021, Nanomaterials.

[3]  E. Benhelal,et al.  Insights into chemical stability of Mg-silicates and silica in aqueous systems using 25Mg and 29Si solid-state MAS NMR spectroscopy: Applications for CO2 capture and utilisation , 2020 .

[4]  Hongwei Zhang,et al.  Recent advances in catalysts for the conversion of ethanol to butadiene. , 2020, Chemistry, an Asian journal.

[5]  Z. Pászti,et al.  MgO−SiO2 Catalysts for the Ethanol to Butadiene Reaction: The Effect of Lewis Acid Promoters , 2020, ChemCatChem.

[6]  M. Capron,et al.  Ethanol-to-butadiene: the reaction and its catalysts , 2020, Catalysis Science & Technology.

[7]  J. Valyon,et al.  Conversion of ethanol to butadiene over mesoporous In2O3-promoted MgO-SiO2 catalysts , 2020 .

[8]  A. Bell,et al.  Ethanol Conversion to Butadiene over Isolated Zinc and Yttrium Sites Grafted onto Dealuminated Beta Zeolite. , 2020, Journal of the American Chemical Society.

[9]  J. Schweitzer,et al.  New insights of butadiene production from ethanol: Elucidation of concurrent reaction pathways and kinetic study , 2020, Chemical Engineering Journal.

[10]  Christine M. Gabardo,et al.  Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation , 2020, Nature Energy.

[11]  Thomas J. Schwartz,et al.  Reaction Kinetics Analysis of Ethanol Dehydrogenation Catalyzed by MgO–SiO2 , 2020 .

[12]  R. Salomão,et al.  Synthesis, Dehydroxylation and Sintering of Porous Mg(OH)2-MgO Clusters: Evolution of Microstructure and Physical Properties , 2020, Interceram - International Ceramic Review.

[13]  Christine M. Gabardo,et al.  Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces , 2019, Nature Catalysis.

[14]  Stacy Gates-Rector,et al.  The Powder Diffraction File: a quality materials characterization database , 2019, Powder Diffraction.

[15]  P. Concepción,et al.  Ethanol conversion into 1,3-butadiene over a mixed Hf-Zn catalyst: Effect of reaction conditions and water content in ethanol , 2019, Fuel Processing Technology.

[16]  J. Gascón,et al.  Surface enhanced dynamic nuclear polarization solid-state NMR spectroscopy sheds light on Brønsted–Lewis acid synergy during the zeolite catalyzed methanol-to-hydrocarbon process† †Electronic supplementary information (ESI) available: Complete experimental procedure, supplementary NMR figures and an , 2019, Chemical science.

[17]  B. Wichterlová,et al.  Enhancement of propene oligomerization and aromatization by proximate protons in zeolites; FTIR study of the reaction pathway in ZSM-5 , 2019, Catalysis Science & Technology.

[18]  W. Zhan,et al.  A novel method for surface wettability modification of talc through thermal treatment , 2019, Applied Clay Science.

[19]  Minhua Zhang,et al.  Insight into the effect of promoters (M = Cu, Ag, Zn, Zr) on aldol condensation reaction based on MgO surface in the process of ethanol to 1, 3-butadiene: A comparative DFT study , 2019, Applied Surface Science.

[20]  Shuang Liu,et al.  Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene , 2019, Applied Catalysis A: General.

[21]  B. Lothenbach,et al.  Characterization of magnesium silicate hydrate ( MSH ) 2 , 2019 .

[22]  B. Sels,et al.  Functionalised heterogeneous catalysts for sustainable biomass valorisation. , 2018, Chemical Society reviews.

[23]  A. Corma,et al.  Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. , 2018, Chemistry.

[24]  J. Baltrusaitis,et al.  In Situ Spectroscopic Insights on the Molecular Structure of the MgO/SiO2 Catalytic Active Sites during Ethanol Conversion to 1,3-Butadiene , 2018, The Journal of Physical Chemistry C.

[25]  F. Kapteijn,et al.  Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process , 2018, Nature Chemistry.

[26]  Landong Li,et al.  Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite , 2018 .

[27]  Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth , 2018 .

[28]  J. Baltrusaitis,et al.  Surface chemistry of MgO/SiO2 catalyst during the ethanol catalytic conversion to 1,3-butadiene: in-situ DRIFTS and DFT study , 2017 .

[29]  I. Ivanova,et al.  Mechanistic Study of Ethanol Conversion into Butadiene over Silver promoted Zirconia Catalysts , 2017 .

[30]  Minhua Zhang,et al.  A DFT study on the aldol condensation reaction on MgO in the process of ethanol to 1,3-butadiene: understanding the structure-activity relationship. , 2017, Physical chemistry chemical physics : PCCP.

[31]  Rajamani Gounder,et al.  Introducing Catalytic Diversity into Single-Site Chabazite Zeolites of Fixed Composition via Synthetic Control of Active Site Proximity , 2017 .

[32]  F. Cavani,et al.  Understanding the Role of Gallium as a Promoter of Magnesium Silicate Catalysts for the Conversion of Ethanol into Butadiene , 2017 .

[33]  T. Bučko,et al.  Catalytic conversion of ethanol to 1,3-butadiene on MgO: A comprehensive mechanism elucidation using DFT calculations , 2017 .

[34]  Xiaoxiong Huang,et al.  Highly active and selective binary MgO–SiO2 catalysts for the production of 1,3-butadiene from ethanol , 2017 .

[35]  M. Capron,et al.  Recent Breakthroughs in the Conversion of Ethanol to Butadiene , 2016 .

[36]  Z. Sobalík,et al.  Proton proximity – New key parameter controlling adsorption, desorption and activity in propene oligomerization over H-ZSM-5 zeolites , 2016 .

[37]  T. Baba,et al.  Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol. , 2016, Physical chemistry chemical physics : PCCP.

[38]  Takahiko Moteki,et al.  Mechanistic Insight to C–C Bond Formation and Predictive Models for Cascade Reactions among Alcohols on Ca- and Sr-Hydroxyapatites , 2016 .

[39]  R. Fort,et al.  TEM-HRTEM study on the dehydration process of nanostructured Mg–Ca hydroxide into Mg–Ca oxide , 2016 .

[40]  B. Weckhuysen,et al.  Role of Magnesium Silicates in Wet-Kneaded Silica-Magnesia Catalysts for the Lebedev Ethanol-to-Butadiene Process , 2016 .

[41]  R. Palkovits,et al.  Formation of 1,3-butadiene from ethanol in a two-step process using modified zeolite-β catalysts , 2016 .

[42]  R. Flatt,et al.  Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates , 2016, Nature Communications.

[43]  A. Chieregato,et al.  An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process , 2016 .

[44]  P. Baglioni,et al.  Structural characterization of magnesium silicate hydrate: towards the design of eco-sustainable cements. , 2016, Dalton transactions.

[45]  Mark E. Davis,et al.  Effect of Heteroatom Concentration in SSZ-13 on the Methanol-to-Olefins Reaction , 2016 .

[46]  B. Lothenbach,et al.  Properties of magnesium silicate hydrates (M-S-H) , 2016 .

[47]  Takeshi Kobayashi,et al.  Dynamic Nuclear Polarization Solid-State NMR in Heterogeneous Catalysis Research , 2015 .

[48]  B. Lothenbach,et al.  Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg–Si phyllosilicates , 2015 .

[49]  B. Weckhuysen,et al.  Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials , 2015 .

[50]  J. Provis,et al.  Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of Magnox sludge. , 2015, Dalton transactions.

[51]  E. Makshina,et al.  Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene. , 2015, ChemSusChem.

[52]  Gabriel dos Passos Gomes,et al.  Orbital hybridization: a key electronic factor in control of structure and reactivity , 2015 .

[53]  A. Chieregato,et al.  On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions. , 2015, ChemSusChem.

[54]  J. Degrève,et al.  Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. , 2014, Chemical Society reviews.

[55]  Matthew D Jones,et al.  Catalytic transformation of ethanol into 1,3-butadiene , 2014, Chemistry Central Journal.

[56]  B. Weckhuysen,et al.  Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts. , 2014, ChemSusChem.

[57]  Esben Taarning,et al.  Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. , 2014, ChemSusChem.

[58]  D. Mattia,et al.  Investigations into the conversion of ethanol to 1,3-butadiene using MgO:SiO2 supported catalysts , 2014 .

[59]  B. Weckhuysen,et al.  Shale gas revolution: an opportunity for the production of biobased chemicals? , 2013, Angewandte Chemie.

[60]  Sung Keun Lee,et al.  Atomic structure and dehydration mechanism of amorphous silica: Insights from 29Si and 1H solid-state MAS NMR study of SiO2 nanoparticles , 2013 .

[61]  B. Weckhuysen,et al.  Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. , 2013, ChemSusChem.

[62]  Robert J. Davis,et al.  Heterogeneous Catalysts for the Guerbet Coupling of Alcohols , 2013 .

[63]  Robert J. Davis,et al.  Isotopic transient analysis of the ethanol coupling reaction over magnesia , 2013 .

[64]  Mark E. Smith,et al.  Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals , 2013, Journal of Materials Science.

[65]  Mark E. Smith,et al.  Recent advances in solid-state 25mg NMR spectroscopy , 2012 .

[66]  Michel Waroquier,et al.  Experimental and theoretical IR study of methanol and ethanol conversion over H-SAPO-34 , 2011 .

[67]  C. Grey,et al.  Defects in doped LaGaO3 anionic conductors: linking NMR spectral features, local environments, and defect thermodynamics. , 2011, Journal of the American Chemical Society.

[68]  C. Cheeseman,et al.  Development of low pH cement systems forming magnesium silicate hydrate (M-S-H) , 2011 .

[69]  C. Marichal,et al.  Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting , 2010 .

[70]  Peter J. Pallister,et al.  Mg-25 ultra-high field solid state NMR spectroscopy and first principles calculations of magnesium compounds. , 2009, Physical chemistry chemical physics : PCCP.

[71]  D. Frost,et al.  Forsterite, hydrous and anhydrous wadsleyite and ringwoodite (Mg2SiO4): 29Si NMR results for chemical shift anisotropy, spin-lattice relaxation, and mechanism of hydration , 2009 .

[72]  K. Klabunde,et al.  IR spectral evidence of aldol condensation : Acetaldehyde adsorption over TiO2 surface , 2008 .

[73]  T. Tsuchida,et al.  Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst , 2008 .

[74]  A. Julbe,et al.  SILICA MEMBRANES - BASIC PRINCIPLES , 2006 .

[75]  K. Kanehashi,et al.  Natural Abundance Solid-state 25Mg MQMAS NMR Studies on Inorganic Solids at a High Magnetic Field of 16.4 T , 2005 .

[76]  J. Llorca,et al.  Microcalorimetric and infrared studies of ethanol and acetaldehyde adsorption to investigate the ethanol steam reforming on supported cobalt catalysts. , 2005, The journal of physical chemistry. B.

[77]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[78]  H. Spiess,et al.  High-resolution 1H NMR spectroscopy in the solid state: very fast sample rotation and multiple-quantum coherences. , 2001, Journal of magnetic resonance.

[79]  P. Aken,et al.  Nanocrystalline, porous periclase aggregates as product of brucite dehydration , 2001 .

[80]  J. I. D. Cosimo,et al.  Acid–base properties and active site requirements for elimination reactions on alkali-promoted MgO catalysts , 2000 .

[81]  S. Weiner,et al.  Diagenesis in Prehistoric Caves: the Use of Minerals that Form In Situ to Assess the Completeness of the Archaeological Record , 2000 .

[82]  N. Nielsen,et al.  Solid-State QCPMG NMR of Low-γ Quadrupolar Metal Nuclei in Natural Abundance , 2000 .

[83]  R. D. Foltz CRC Handbook of Chemistry and Physics:A Ready-Reference Book of Chemical and Physical Data , 2000 .

[84]  M. Alba,et al.  High-resolution 1H MAS NMR spectra of 2∶1 phyllosilicates , 2000 .

[85]  E. Iglesia,et al.  Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides , 1998 .

[86]  K. Okada,et al.  Role of Water in the Mechanochemical Reactions of MgO–SiO2Systems , 1998 .

[87]  E. Iglesia,et al.  Bifunctional condensation reactions of alcohols on basic oxides modified by copper and potassium , 1998 .

[88]  J. Sauer,et al.  29Si NMR Chemical Shifts of Silicate Species: Ab Initio Study of Environment and Structure Effects , 1996 .

[89]  Steuernagel,et al.  Z Filtering in MQMAS NMR , 1996, Journal of magnetic resonance. Series A.

[90]  J. L. Caillerie,et al.  29SI NMR OBSERVATION OF AN AMORPHOUS MAGNESIUM SILICATE FORMED DURING IMPREGNATION OF SILICA WITH MG(II) IN AQUEOUS SOLUTION , 1995 .

[91]  J. Fripiat,et al.  Catalytic properties of aluminated sepiolite in ethanol conversion , 1995 .

[92]  A. Kiennemann,et al.  Reactions of Acetaldehyde on CeO2 and CeO2-Supported Catalysts , 1995 .

[93]  R. Černý,et al.  Empirical Texture Corrections for Asymmetric Diffraction and Inclined Textures , 1995 .

[94]  K. MacKenzie,et al.  Thermal reactions of chrysotile revisited; a 29 Si and 25 Mg MAS NMR study , 1994 .

[95]  G. Scheler,et al.  Determination of distributions of the quadrupole interaction in amorphous solids by 27Al satellite transition spectroscopy. , 1993, Solid state nuclear magnetic resonance.

[96]  S. Locatelli,et al.  Acetaldehyde adsorption on HZSM-5 studied by infrared spectroscopy , 1992 .

[97]  L. Facchini,et al.  Silicon-29 NMR study of silica , 1992 .

[98]  J. S. Hartman,et al.  Gel synthesis of magnesium silicates: A 29Si magic angle spinning NMR study , 1990 .

[99]  Alina Agüero,et al.  Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts , 1988 .

[100]  R. Gorte,et al.  An infrared spectroscopy study of simple alcohols adsorbed on H-ZSM-5 , 1987 .

[101]  É. Lippmaa,et al.  Solid-state high-resolution silicon-29 chemical shifts in silicates , 1984 .

[102]  J. Green Calcination of precipitated Mg(OH)2 to active MgO in the production of refractory and chemical grade MgO , 1983 .

[103]  G. Maciel,et al.  Cross-polarization magic-angle-spinning silicon-29 nuclear magnetic resonance study of silica gel using trimethylsilane bonding as a probe of surface geometry and reactivity , 1982 .

[104]  É. Lippmaa,et al.  Structural studies of silicates by solid-state high-resolution silicon-29 NMR , 1980 .

[105]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[106]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[107]  W. Cole A Crystalline Hydrated Magnesium Silicate formed in the Breakdown of a Concrete Sea-wall , 1953, Nature.