Which objective function to calibrate rainfall–runoff models for low-flow index simulations?

ABSTRACT Much has been written on the subject of objective functions to calibrate rainfall–runoff models. Many studies focus on the best choice for low-flow simulations or different multi-objective purposes. Only a few studies, however, investigate objective functions to optimize the simulations of low-flow indices that are important for water management. Here, we test different objective functions, from single objective functions with different discharge transformations or using low-flow indices, to combinations of single objective functions, and we evaluate their robustness and sensitivity to the rainfall–runoff model. We find that the Kling and Gupta efficiency (KGE) applied to a transformation of discharge is inadequate to fulfil all assessment criteria, whereas the mean of the KGE applied to the discharge and the KGE applied to the inverse of the discharge is sufficient. The robustness depends on the climate variability rather than the objective function and the results are insensitive to the model. EDITOR A. Castellarin; ASSOCIATE EDITOR C. Perrin

[1]  C. Magand Influence de la représentation des processus nivaux sur l'hydrologie de la Durance et sa réponse au changement climatique. , 2014 .

[2]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[3]  Thibault Mathevet,et al.  A bounded version of the Nash-Sutcliffe criterion for better model assessment on large sets of basins , 2006 .

[4]  G. Blöschl,et al.  Seasonality indices for regionalizing low flows , 2006 .

[5]  David R. Maidment,et al.  Handbook of Hydrology , 1993 .

[6]  C. Perrin,et al.  ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments , 2014 .

[7]  L. Gottschalk,et al.  Estimating mean monthly runoff at ungauged locations: an application to France , 2008 .

[8]  Günter Blöschl,et al.  Regionalisation of catchment model parameters , 2004 .

[9]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[10]  Jean-Philippe Vidal,et al.  A 50‐year high‐resolution atmospheric reanalysis over France with the Safran system , 2010 .

[11]  Florent Lobligeois Mieux connaître la distribution spatiale des pluies améliore-t-il la modélisation des crues ? Diagnostic sur 181 bassins versants français , 2014 .

[12]  Florence Habets,et al.  Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France , 2008 .

[13]  H. Houghton-Carr Assessment criteria for simple conceptual daily rainfall-runoff models , 1999 .

[14]  V. Klemeš,et al.  Operational Testing of Hydrological Simulation Models , 2022 .

[15]  William J. Wolfe,et al.  Model Calibration Criteria for Estimating Ecological Flow Characteristics , 2015 .

[16]  P. Krause,et al.  COMPARISON OF DIFFERENT EFFICIENCY CRITERIA FOR HYDROLOGICAL MODEL ASSESSMENT , 2005 .

[17]  J. Stedinger Frequency analysis of extreme events , 1993 .

[18]  T. McMahon,et al.  Assessing the adequacy of catchment streamflow yield estimates , 1993 .

[19]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[20]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[21]  F. Anctil,et al.  Which potential evapotranspiration input for a lumped rainfall-runoff model?. Part 2: Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling , 2005 .

[22]  Hubert H. G. Savenije,et al.  Soft combination of local models in a multi-objective framework , 2007 .

[23]  H. J. Henriksen,et al.  Evaluation of a typical hydrological model in relation to environmental flows , 2013 .

[24]  Dominique Thiéry,et al.  Benchmarking hydrological models for low-flow simulation and forecasting on French catchments , 2013 .

[25]  Keith Beven,et al.  Calibration of hydrological models using flow-duration curves , 2010 .

[26]  Katie Price,et al.  Tradeoffs among watershed model calibration targets for parameter estimation , 2012 .

[27]  C. Perrin,et al.  A review of efficiency criteria suitable for evaluating low-flow simulations , 2012 .

[28]  H. Madsen,et al.  Multiobjective calibration with Pareto preference ordering: An application to rainfall‐runoff model calibration , 2005 .

[29]  Ž. Andreić,et al.  Flow duration curves , 2011 .

[30]  Vazken Andréassian,et al.  The exponential store: a correct formulation for rainfall—runoff modelling , 2003 .

[31]  Martijn J. Booij,et al.  Balance between calibration objectives in a conceptual hydrological model , 2010 .

[32]  Richard M. Vogel,et al.  Flow duration curves II : a review of applications in water resources planning , 1995 .

[33]  V. Smakhtin Low flow hydrology: a review , 2001 .

[34]  Martijn J. Booij,et al.  Catchment Variability and Parameter Estimation in Multi-Objective Regionalisation of a Rainfall–Runoff Model , 2010 .

[35]  Hoshin Vijai Gupta,et al.  Comparing expert judgement and numerical criteria for hydrograph evaluation , 2015 .

[36]  François Anctil,et al.  Which potential evapotranspiration input for a lumped rainfall-runoff model?. Part 1—Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? , 2005 .

[37]  Richard M. Vogel,et al.  Flow‐Duration Curves. I: New Interpretation and Confidence Intervals , 1994 .

[38]  Nilo Nascimento,et al.  GR3J: a daily watershed model with three free parameters , 1999 .

[39]  Thibault Mathevet,et al.  Dynamic averaging of rainfall‐runoff model simulations from complementary model parameterizations , 2006 .

[40]  K. Engeland,et al.  A Comparison of Low Flow Estimates in Ungauged Catchments Using Regional Regression and the HBV-Model , 2009 .

[41]  Nicolas Le Moine,et al.  Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modèles pluie-débit? , 2008 .

[42]  M. Budyko,et al.  Climate and life , 1975 .

[43]  M. J. Booij,et al.  The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics , 2015 .

[44]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .

[45]  Nanée Chahinian,et al.  Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment — MOPEX , 2006 .