Statistical mechanics of complex networks

The science of complex networks is a new interdisciplinary branch of science which has arisen recently on the interface of physics, biology, social and computer sciences, and others. Its main goal is to discover general laws governing the creation and growth as well as processes taking place on networks, like e.g. the Internet, transportation or neural networks. It turned out that most real-world networks cannot be simply reduced to a compound of some individual components. Fortunately, the statistical mechanics, being one of pillars of modern physics, provides us with a very powerful set of tools and methods for describing and understanding these systems. In this thesis, we would like to present a consistent approach to complex networks based on statistical mechanics, with the central role played by the concept of statistical ensemble of networks. We show how to construct such a theory and present some practical problems where it can be applied. Among them, we pay attention to the problem of finite-size corrections and the dynamics of a simple model of mass transport on networks.

[1]  Long range correlations in branched polymers , 1995, hep-lat/9511024.

[2]  Matter Correlations in Branched Polymers , 2000, cond-mat/0001386.