Structural analysis of human proximal femur for the prediction of biomechanical strength in vitro: the locally adapted scaling vector method
暂无分享,去创建一个
Roberto A. Monetti | Holger F. Böhm | Dirk Müller | Thomas M. Link | Christoph Räth | E. Rummeny | T. Link | R. Monetti | D. Müller | C. Räth | H. Böhm
[1] S. Majumdar,et al. Local 3D Scaling Properties for the Analysis of Trabecular Bone Extracted from High-Resolution Magnetic Resonance Imaging of Human Trabecular Bone: Comparison with Bone Mineral Density in the Prediction of Biomechanical Strength In Vitro , 2003, Investigative radiology.
[2] R. Huiskes,et al. Mechanical and textural properties of pelvic trabecular bone. , 1993, Journal of biomechanics.
[3] Gabriel Cristóbal,et al. Space and frequency variant image enhancement based on a Gabor representation , 1994, Pattern Recognit. Lett..
[4] S. Majumdar,et al. Structure Analysis of High Resolution Magnetic Resonance Imaging of the Proximal Femur: In Vitro Correlation with Biomechanical Strength and BMD , 2003, Calcified Tissue International.
[5] H. Gundersen,et al. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. , 1991, Bone.
[6] X Ouyang,et al. A Comparative Study of Trabecular Bone Properties in the Spine and Femur Using High Resolution MRI and CT , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
[7] S. Majumdar,et al. Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. , 1995, Bone.
[8] Nicolai Petkov,et al. Contour detection based on nonclassical receptive field inhibition , 2003, IEEE Trans. Image Process..
[9] M. Laval-jeantet,et al. CT image analysis of the vertebral trabecular network in vivo , 1992, Calcified Tissue International.
[10] Ernst J. Rummeny,et al. Assessing the biomechanical strength of trabecular bone in vitro using 3D anisotropic nonlinear texture measures: the scaling vector method , 2004, SPIE Medical Imaging.
[11] Nicolai Petkov,et al. Comparison of texture features based on Gabor filters , 2002, IEEE Trans. Image Process..
[12] Peter Kovesi,et al. Image Features from Phase Congruency , 1995 .
[13] M. Drezner,et al. Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee , 1987, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
[14] Anil K. Jain,et al. Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.
[15] Martin Heller,et al. Hochauflösende Darstellung und Quantifizierung der trabekulären Knochenstruktur der Fingerphalangen mit der Magnetresonanztomographie , 1997 .
[16] S. Majumdar,et al. A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis , 1995, Osteoporosis International.
[17] Nicolai Petkov,et al. Nonlinear operator for oriented texture , 1999, IEEE Trans. Image Process..
[18] Ernst J. Rummeny,et al. Scaling index method: a novel nonlinear technique for the analysis of high-resolution MRI of human bones , 2003, SPIE Medical Imaging.
[19] L. Avioli,et al. The bone “quality” problem , 1992, Calcified Tissue International.
[20] S. Majumdar,et al. Correlation of Trabecular Bone Structure with Age, Bone Mineral Density, and Osteoporotic Status: In Vivo Studies in the Distal Radius Using High Resolution Magnetic Resonance Imaging , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.