Cryo-EM structures of the β3 adrenergic receptor bound to solabegron and isoproterenol.

[1]  O. Nureki,et al.  Pharmacophore‐guided Virtual Screening to Identify New β3‐adrenergic Receptor Agonists , 2021, Molecular informatics.

[2]  O. Nureki,et al.  Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity. , 2021, Molecular cell.

[3]  Susann Varano,et al.  Efficacy and Safety of Once-Daily Vibegron for Treatment of Overactive Bladder in Patients Aged ≥65 and ≥75 Years: Subpopulation Analysis from the EMPOWUR Randomized, International, Phase III Study , 2021, Drugs & Aging.

[4]  O. Nureki,et al.  Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. , 2020, Biochemical and biophysical research communications.

[5]  J. Meyerson,et al.  Structural Basis of the Activation of Heterotrimeric Gs-Protein by Isoproterenol-Bound β1-Adrenergic Receptor. , 2020, Molecular cell.

[6]  D. Staskin,et al.  International Phase III, Randomized, Double-Blind, Placebo- and Active-Controlled Study to Evaluate the Safety and Efficacy of Vibegron in Patients with Symptoms of Overactive Bladder: EMPOWUR. , 2020, The Journal of urology.

[7]  O. Nureki,et al.  Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein , 2019, bioRxiv.

[8]  R. Russell,et al.  Illuminating G-Protein-Coupling Selectivity of GPCRs , 2019, Cell.

[9]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[10]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[11]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[12]  J. Lamerdin,et al.  Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis , 2017, Proceedings of the National Academy of Sciences.

[13]  M. Struthers,et al.  Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder , 2017, The Journal of Pharmacology and Experimental Therapeutics.

[14]  C. Tate,et al.  Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation , 2016, Protein engineering, design & selection : PEDS.

[15]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[16]  G. Choby,et al.  Pharmacotherapy for the treatment of asthma: current treatment options and future directions , 2015, International forum of allergy & rhinology.

[17]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[18]  E. Ohlstein,et al.  A multicenter, double-blind, randomized, placebo-controlled trial of the β3-adrenoceptor agonist solabegron for overactive bladder. , 2012, European urology.

[19]  E. Sacco,et al.  Mirabegron: a review of recent data and its prospects in the management of overactive bladder , 2012, Therapeutic advances in urology.

[20]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[21]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[22]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[23]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[24]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[25]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[26]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[27]  N. Aiyar,et al.  GW427353 (Solabegron), a Novel, Selective β3-Adrenergic Receptor Agonist, Evokes Bladder Relaxation and Increases Micturition Reflex Threshold in the Dog , 2007, Journal of Pharmacology and Experimental Therapeutics.

[28]  M. Sasamata,et al.  Effect of (R)-2-(2-Aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} Acetanilide (YM178), a Novel Selective β3-Adrenoceptor Agonist, on Bladder Function , 2007, Journal of Pharmacology and Experimental Therapeutics.

[29]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[30]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[31]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[32]  O. Yamaguchi β3-adrenoceptors in human detrusor muscle ☆ , 2002 .

[33]  M. Cazzola,et al.  Long-Acting β2 Agonists in the Management of Stable Chronic Obstructive Pulmonary Disease , 2000, Drugs.

[34]  A. Shuldiner,et al.  The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64. , 1997, Gene.

[35]  A. Strosberg,et al.  Molecular characterization of the human beta 3-adrenergic receptor. , 1989, Science.

[36]  A. M. Lands,et al.  Differentiation of Receptor Systems activated by Sympathomimetic Amines , 1967, Nature.

[37]  R. Ahlquist,et al.  A study of the adrenotropic receptors. , 1948, The American journal of physiology.

[38]  James M. Wright,et al.  Blood pressure lowering efficacy of beta-1 selective beta blockers for primary hypertension. , 2016, The Cochrane database of systematic reviews.

[39]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .