Bilingual and Cross Domain Politics Analysis

Opinion mining on Twitter recently attracted research in- terest in politics using Information Retrieval (IR) and Natural Lan- guage Processing (NLP). However, getting domain-specific annotated data still remains a costly manual step. In addition, the amount and quality of these annotation may be critical regarding the performance of machine learning (ML) based systems. An alternative solution is to use cross-language and cross-domain sets to simulate training data. This paper describe a ML approach to automatically annotate Spanish tweets dealing with the online-reputation of politicians. Our main finding is that a simple statistical NLP classifier without in-domain training can provide as reliable annotation as humans annotators and outperform more specific resources such as lexicon or in-domain data.

[1]  Gökhan Tür,et al.  Bootstrapping Spoken Dialog Systems with Data Reuse , 2004, SIGDIAL Workshop.

[2]  Trevor Cohn,et al.  A user-centric model of voting intention from Social Media , 2013, ACL.

[3]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[4]  Eric SanJuan,et al.  Investigating the Image of Entities in Social Media: Dataset Design and First Results , 2014, LREC.

[5]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[6]  Paolo Rosso,et al.  A multidimensional approach for detecting irony in Twitter , 2013, Lang. Resour. Evaluation.

[7]  L. Alonso-Quecuty,et al.  Detectando la ironía: la hipótesis • aditiva como alternativa a las de la referencia y la intención , 1991 .

[8]  Brendan T. O'Connor,et al.  From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series , 2010, ICWSM.

[9]  Julio Gonzalo,et al.  ORMA: A Semi-automatic Tool for Online Reputation Monitoring in Twitter , 2014, ECIR.

[10]  Rob Malouf,et al.  Taking sides: user classification for informal online political discourse , 2008, Internet Res..

[11]  Lluís F. Hurtado,et al.  Political Tendency Identification in Twitter using Sentiment Analysis Techniques , 2014, COLING.

[12]  Maya Bialik,et al.  Sentiment in New York City: A High Resolution Spatial and Temporal View , 2013, ArXiv.

[13]  Eric Gaussier,et al.  Opinion Detection as a Topic Classification Problem , 2012 .

[14]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[15]  Maulahikmah Galinium,et al.  Automatic mood classification of Indonesian tweets using linguistic approach , 2013, 2013 International Conference on Information Technology and Electrical Engineering (ICITEE).

[16]  Mirella Lapata,et al.  Proceedings of the Fourteenth Conference on Computational Natural Language Learning , 2010, CoNLL 2010.

[17]  María Luisa Alonso Quecuty,et al.  Detectando la ironía: La hipótesis aditiva como alternativa a las de referencia y la intención , 1991 .

[18]  Adam D. I. Kramer An unobtrusive behavioral model of "gross national happiness" , 2010, CHI.

[19]  Julio Villena Román,et al.  TASS 2013 - Workshop on Sentiment Analysis at SEPLN 2013: An overview , 2013 .

[20]  Adam Lopez,et al.  Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies , 2011 .

[21]  Anatoliy A. Gruzd,et al.  Is Happiness Contagious Online? A Case of Twitter and the 2010 Winter Olympics , 2011, 2011 44th Hawaii International Conference on System Sciences.

[22]  Johan Bollen,et al.  Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena , 2009, ICWSM.

[23]  Shrikanth S. Narayanan,et al.  A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle , 2012, ACL.

[24]  Mike Thelwall,et al.  Sentiment in Twitter events , 2011, J. Assoc. Inf. Sci. Technol..

[25]  Christopher M. Danforth,et al.  Measuring the Happiness of Large-Scale Written Expression: Songs, Blogs, and Presidents , 2010, ArXiv.

[26]  Claire Cardie,et al.  39. Opinion mining and sentiment analysis , 2014 .

[27]  D. Maynard,et al.  Challenges in developing opinion mining tools for social media , 2012 .

[28]  Víctor M. González,et al.  Sentiment Characterization of an Urban Environment via Twitter , 2013, UCAmI.

[29]  Nina Wacholder,et al.  Identifying Sarcasm in Twitter: A Closer Look , 2011, ACL.

[30]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[31]  Horacio Saggion,et al.  Modelling Irony in Twitter , 2014, EACL.

[32]  Horacio Saggion,et al.  Modelling Irony in Twitter: Feature Analysis and Evaluation , 2014, LREC.

[33]  Eni Mustafaraj,et al.  Can Collective Sentiment Expressed on Twitter Predict Political Elections? , 2011, AAAI.

[34]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[35]  José Bravo,et al.  Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction , 2013, Lecture Notes in Computer Science.

[36]  Mohamed Morchid,et al.  Feature selection using Principal Component Analysis for massive retweet detection , 2014, Pattern Recognit. Lett..

[37]  Iñaki San Vicente,et al.  Elhuyar at TASS 2013 , 2013 .

[38]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[39]  Philip J. Stone,et al.  Extracting Information. (Book Reviews: The General Inquirer. A Computer Approach to Content Analysis) , 1967 .

[40]  Edgar Tello-Leal,et al.  Reflexiones sobre el uso de las tecnologías de información y comunicación en las campañas electorales en México: e-campañas , 2012 .