Haar wavelet direct method for solving variational problems

This paper establishes a clear procedure for the variational problem solution via Haar wavelet technique. The variational problems are solved by means of the direct method using the Haar wavelets and reduced to the solution of algebraic equations. The local property of Haar wavelets is fully applied to shorten the calculation process in the task. Three illustrative examples and a practical application to a heat conduction problem are included.

[1]  C. Hsiao,et al.  Optimal Control of Linear Time-Varying Systems via Haar Wavelets , 1999 .

[2]  Henry J. Kelley,et al.  Gradient Theory of Optimal Flight Paths , 1960 .

[3]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[4]  C. F. Chen,et al.  A walsh series direct method for solving variational problems , 1975 .

[5]  R. Haddad,et al.  Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets , 1992 .

[6]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[7]  G. F. Newell,et al.  The variational method in engineering , 1968 .

[8]  Changrong Yi,et al.  Haar wavelet method for solving lumped and distributed-parameter systems , 1997 .

[9]  Maw-Ling Wang,et al.  Shifted Legendre direct method for variational problems , 1983 .

[10]  A. V. Levy,et al.  Summary and comparison of gradient-restoration algorithms for optimal control problems , 1972 .

[11]  J. Chou,et al.  Shifted Chebyshev direct method for solving variational problems , 1985 .

[12]  T. J. Rivlin Approximate Methods of Higher Analysis (L. V. Kantorovich and V. I. Krylov) , 1960 .

[13]  C. F. Chen,et al.  Wavelet approach to optimising dynamic systems , 1999 .

[14]  A. E. Bryson,et al.  A Steepest-Ascent Method for Solving Optimum Programming Problems , 1962 .

[15]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[16]  C. Hwang,et al.  Laguerre series direct method for variational problems , 1983 .

[17]  A. Miele,et al.  Sequential gradient-restoration algorithm for optimal control problems , 1970 .

[18]  Wen-June Wang,et al.  State analysis and optimal control of linear time-varying systems via Haar wavelets , 1998 .

[19]  C. H. Hsiao,et al.  State Analysis and Optimal Control of Time-Varying Discrete Systems via Haar Wavelets , 1999 .

[20]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[21]  Wen-June Wang,et al.  State analysis and parameter estimation of bilinear systems via Haar wavelets , 2000 .

[22]  A. Miele Recent advances in gradient algorithms for optimal control problems , 1975 .