Applications of Integral Equations in Particle-Size Statistics

We discuss the application of integral equations techniques to two broad areas of particle statistics, namely, stereology and packing. Problems in stereology lead to the inversion of Abel-type integral equations; and we present a brief survey of existing methods, analytical and numerical, for doing this. Packing problems lead to Volterra equations which, in simple cases, can be solved exactly and, in other cases, need to be solved numerically. Methods for doing this are presented along with some numerical results.

[1]  L. Santaló Sobre la distribucion de los tamaños de corpusculos contenidos en un cuerpo a partir de la distribucion en sus secciones o proyecciones , 1955 .

[2]  Geoffrey S. Watson,et al.  Estimating functionals of particle size distributions , 1971 .

[3]  P. Moran THE PROBABALISTIC BASIS OF STEREOLOGY , 1972 .

[4]  W. L. Nicholson,et al.  Estimation of linear properties of particle size distributions , 1970 .

[5]  N Keiding,et al.  Maximum likelihood estimation of the size distribution of liver cell nuclei from the observed distribution in a plane section. , 1972, Biometrics.

[6]  P. Ney,et al.  A Random Interval Filling Problem , 1962 .

[7]  Herbert Solomon,et al.  On random sequential packing in the plane and a conjecture of palasti , 1970, Journal of Applied Probability.

[8]  K. L. Walters,et al.  Particle size distribution by area analysis: Modifications and extensions of the Saltykov method☆ , 1973 .

[9]  Random Packing of Particles: Simulation With a One Dimensional Parking Model , 1974 .

[10]  W. P. Reid Distribution of Sizes of Spheres in a Solid from a Study of Slices of the Solid , 1955 .

[11]  H. Solomon Random packing density , 1967 .

[12]  Gerald N. Minerbo,et al.  Inversion of Abel’s Integral Equation by Means of Orthogonal Polynomials , 1969 .

[13]  E. Scheil,et al.  Die Berechnung der Anzahl und Größenverteilung kugelförmiger Kristalle in undurchsichtigen Körpern mit Hilfe der durch einen ebenen Schnitt erhaltenen Schnittkreise , 1931 .

[14]  Pierre Verbaeten,et al.  Numerical solution of the abel integral equation , 1973 .

[15]  S. D. Wicksell,et al.  THE CORPUSCLE PROBLEM. A MATHEMATICAL STUDY OF A BIOMETRIC PROBLEM , 1925 .

[16]  P. Goldsmith The calculation of true particle size distributions from the sizes observed in a thin slice , 1967 .

[17]  Ee Underwood,et al.  The Mathematical Foundations of Quantitative Stereology , 1972 .

[18]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[19]  Robert S. Anderssen,et al.  Abel type integral equations in stereology. II. Computational methods of solution and the random spheres approximation , 1975 .

[20]  Robert S. Anderssen,et al.  Abel type integral equations in stereology: I. General discussion , 1975 .

[21]  S. D. Wicksell,et al.  THE CORPUSCLE PROBLEM. SECOND MEMOIR CASE OF ELLIPSOIDAL CORPUSCLES , 1926 .