A massively parallel exponential integrator for advection-diffusion models
暂无分享,去创建一个
Marco Vianello | Luca Bergamaschi | Marco Caliari | Angeles Martinez | L. Bergamaschi | Ángeles Martínez | M. Vianello | M. Caliari
[1] Ronnie Kosloff,et al. Low-order polynomial approximation of propagators for the time-dependent Schro¨dinger equation , 1992 .
[2] Marco Caliari,et al. Accurate evaluation of divided differences for polynomial interpolation of exponential propagators , 2007, Computing.
[3] Marco Vianello,et al. The ReLPM Exponential Integrator for FE Discretizations of Advection-Diffusion Equations , 2004, International Conference on Computational Science.
[4] J. Crank,et al. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[5] Marco Vianello,et al. Efficient approximation of the exponential operator for discrete 2D advection–diffusion problems , 2003, Numer. Linear Algebra Appl..
[6] Mayya Tokman,et al. Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods , 2006, J. Comput. Phys..
[7] L. Bergamaschi,et al. Interpolating discrete advection-diffusion propagators at Leja sequences , 2004 .
[8] Marco Vianello,et al. A Parallel Exponential Integrator for Large-Scale Discretizations of Advection-Diffusion Models , 2005, PVM/MPI.
[9] H. Tal-Ezer,et al. An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .
[10] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[11] Marco Vianello,et al. Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials , 2006, International Conference on Computational Science.
[12] B. Parlett,et al. Accurate Computation of Divided Differences of the Exponential Function , 1984 .
[13] I. Moret,et al. THE COMPUTATION OF FUNCTIONS OF MATRICES BY TRUNCATED FABER SERIES , 2001 .
[14] Message Passing Interface Forum. MPI: A message - passing interface standard , 1994 .
[15] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[16] S. Cox,et al. Exponential Time Differencing for Stiff Systems , 2002 .
[17] I. Moret,et al. An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .
[18] Marco Vianello,et al. Interpolating discrete advection-diffusion propagators at spectral Leja sequences , 2004 .
[19] C. Gonzáleza,et al. A second-order Magnus-type integrator for nonautonomous parabolic problems , 2005 .
[20] L. Bergamaschi,et al. The LEM exponential integrator for advection-diffusion-reaction equations , 2007 .
[21] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[22] Marlis Hochbruck,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005, SIAM J. Numer. Anal..
[23] F. Leja. Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme , 1957 .
[24] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[25] Youcef Saad,et al. A Basic Tool Kit for Sparse Matrix Computations , 1990 .
[26] S. Krogstad. Generalized integrating factor methods for stiff PDEs , 2005 .
[27] L. Reichel. Newton interpolation at Leja points , 1990 .
[28] HochbruckMarlis,et al. Explicit Exponential Runge-Kutta Methods for Semilinear Parabolic Problems , 2005 .