The CREW PRAM Complexity of Modular Inversion

One of the long-standing open questions in the theory of parallel computation is the parallel complexity of the integer gcd and related problems, such as modular inversion. We present a lower bound Ω(log n) for the CREW PRAM complexity for inversion modulo certain n-bit integers, including all such primes. For infinitely many moduli, our lower bound matches asymptotically the known upper bound. We obtain a similar lower bound for computing a specified bit in a large power of an integer. Our main tools are certain estimates for exponential sums in finite fields.

[1]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[2]  KENNETH WEBER Parallel Implementation of the Accelerated Integer GCD Algorithm , 1996, J. Symb. Comput..

[3]  Faith Ellen,et al.  The Complexity of Computation on the Parallel Random Access Machine , 1993 .

[4]  Rüdiger Reischuk,et al.  Exact time bounds for computing boolean functions on PRAMs without simultaneous writes , 1990, SPAA '90.

[5]  Bruce E. Litow,et al.  O(log(n)) Parallel Time Finite Field Inversion , 1988, AWOC.

[6]  Rüdiger Reischuk,et al.  Feasible Time-Optimal Algorithms for Boolean Functions on Exclusive-Write Parallel Random-Access Machines , 1996, SIAM J. Comput..

[7]  Joachim von zur Gathen,et al.  Boolean Circuits Versus Arithmetic Circuits , 1991, Inf. Comput..

[8]  Giovanni Cesari Parallel Implementation of Schönhage's Integer GCD Algorithm , 1998, ANTS.

[9]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[10]  Ian Parberry,et al.  Improved Upper and Lower Time Bounds for Parallel Random Access Machines Without Simultaneous Writes , 1991, SIAM J. Comput..

[11]  Joachim von zur Gathen Computing Powers in Parallel , 1987, SIAM J. Comput..

[12]  Loo Keng Hua,et al.  Introduction to number theory , 1982 .

[13]  S. D. Cohen COMPUTATIONAL AND ALGORITHMIC PROBLEMS IN FINITE FIELDS , 1994 .

[14]  G. Purdy A carry-free algorithm for finding the greatest common divisor of two integers , 1983 .

[15]  Jonathan P. Sorenson Two Fast GCD Algorithms , 1994, J. Algorithms.

[16]  Joachim von zur Gathen,et al.  Inversion in Finite Fields Using Logarithmic Depth , 1990, J. Symb. Comput..

[17]  Rudolf Lide,et al.  Finite fields , 1983 .

[18]  Igor E. Shparlinski Number Theoretic Methods in Cryptography: Complexity lower bounds , 1999 .

[19]  Michael Mñuk A Div(n) Depth Boolean Circuit for Smooth Modular Inverse , 1990, IMYCS.

[20]  André Weil,et al.  Basic number theory , 1967 .

[21]  Stephen A. Cook,et al.  Upper and Lower Time Bounds for Parallel Random Access Machines without Simultaneous Writes , 1986, SIAM J. Comput..

[22]  Joachim von zur Gathen Processor-Efficient Exponentiation in Finite Fields , 1992, Inf. Process. Lett..

[23]  Joachim von zur Gathen,et al.  Gauss Periods and Fast Exponentiation in Finite Fields (Extended Abstract) , 1995, LATIN.

[24]  Rüdiger Reischuk,et al.  Exact Lower Time Bounds for Computing Boolean Functions on CREW PRAMs , 1994, J. Comput. Syst. Sci..

[25]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[26]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[27]  Gary L. Miller,et al.  Sublinear Parallel Algorithm for Computing the Greatest Common Divisor of Two Integers , 1984, FOCS.

[28]  Kireeti Kompella,et al.  Using smoothness to achieve parallelism , 1988, STOC '88.