The natural frequencies of the resting human brain: An MEG-based atlas

[1]  Tony W. Wilson,et al.  Three-year reliability of MEG resting-state oscillatory power , 2021, NeuroImage.

[2]  Bradley Voytek,et al.  Methodological considerations for studying neural oscillations , 2021, The European journal of neuroscience.

[3]  Richard Gao,et al.  Parameterizing neural power spectra into periodic and aperiodic components , 2020, Nature Neuroscience.

[4]  Michael X Cohen,et al.  A data-driven method to identify frequency boundaries in multichannel electrophysiology data , 2020, Journal of Neuroscience Methods.

[5]  Marrit B. Zuure,et al.  Multiple Midfrontal Thetas Revealed by Source Separation of Simultaneous MEG and EEG , 2020, The Journal of Neuroscience.

[6]  Nora A. Herweg,et al.  Theta Oscillations in Human Memory , 2020, Trends in Cognitive Sciences.

[7]  Giridhar P. Kalamangalam,et al.  A neurophysiological brain map: Spectral parameterization of the human intracranial electroencephalogram , 2019, Clinical Neurophysiology.

[8]  J. Schoffelen,et al.  The frequency gradient of human resting-state brain oscillations follows cortical hierarchies , 2019, bioRxiv.

[9]  M. Chavez,et al.  Perturbation-based mapping of natural frequencies with direct intracranial stimulation of the human brain , 2019, bioRxiv.

[10]  François Tadel,et al.  Brainstorm Pipeline Analysis of Resting-State Data From the Open MEG Archive , 2019, Front. Neurosci..

[11]  Sarang S. Dalal,et al.  Reducing power line noise in EEG and MEG data via spectrum interpolation , 2019, NeuroImage.

[12]  Simon B Eickhoff,et al.  Imaging-based parcellations of the human brain , 2018, Nature Reviews Neuroscience.

[13]  Satu Palva,et al.  Functional integration across oscillation frequencies by cross‐frequency phase synchronization , 2018, The European journal of neuroscience.

[14]  Gaël Varoquaux,et al.  Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping , 2018, Scientific Data.

[15]  Bradley Voytek,et al.  Cycle-by-cycle analysis of neural oscillations , 2018, bioRxiv.

[16]  Jeffery A. Hall,et al.  Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas , 2018, Brain : a journal of neurology.

[17]  Monika S. Mellem,et al.  Intrinsic frequency biases and profiles across human cortex. , 2017, Journal of neurophysiology.

[18]  M. Knyazeva,et al.  Fine Structure of Posterior Alpha Rhythm in Human EEG: Frequency Components, Their Cortical Sources, and Temporal Behavior , 2017, Scientific Reports.

[19]  Hiroshi Shibasaki,et al.  A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017 , 2017, Clinical neurophysiology practice.

[20]  Diego Vidaurre,et al.  Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks , 2017, bioRxiv.

[21]  D. Mantini,et al.  Human resting-state electrophysiological networks in the alpha frequency band: Evidence from magnetoencephalographic source imaging , 2017, bioRxiv.

[22]  S. Cole,et al.  Brain Oscillations and the Importance of Waveform Shape , 2017, Trends in Cognitive Sciences.

[23]  C. Moore,et al.  Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice , 2016, Proceedings of the National Academy of Sciences.

[24]  J. Gross,et al.  Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints , 2016, PLoS biology.

[25]  Kaustubh Supekar,et al.  Distinct Global Brain Dynamics and Spatiotemporal Organization of the Salience Network , 2016, PLoS biology.

[26]  Alan C. Evans,et al.  OMEGA: The Open MEG Archive , 2016, NeuroImage.

[27]  C. Schroeder,et al.  Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex , 2015, The Journal of Neuroscience.

[28]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[29]  S. Grimm,et al.  Frontal midline theta oscillations during mental arithmetic: effects of stress , 2015, Front. Behav. Neurosci..

[30]  M. Frank,et al.  Frontal theta as a mechanism for cognitive control , 2014, Trends in Cognitive Sciences.

[31]  J. Jacobs Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Aapo Hyvärinen,et al.  Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data , 2014, NeuroImage.

[33]  F. D. Silva,et al.  EEG and MEG: Relevance to Neuroscience , 2013, Neuron.

[34]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[35]  Ashesh D. Mehta,et al.  Dominant frequencies of resting human brain activity as measured by the electrocorticogram , 2013, NeuroImage.

[36]  Arne D. Ekstrom,et al.  A comparative study of human and rat hippocampal low‐frequency oscillations during spatial navigation , 2013, Hippocampus.

[37]  S. Muthukumaraswamy High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations , 2013, Front. Hum. Neurosci..

[38]  Arne D. Ekstrom,et al.  Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval , 2013, Nature Neuroscience.

[39]  Brendon O. Watson,et al.  Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. , 2012, Dialogues in clinical neuroscience.

[40]  Andreas Kleinschmidt,et al.  EEG Alpha Power Modulation of fMRI Resting-State Connectivity , 2012, Brain Connect..

[41]  G. Tononi,et al.  Reduced natural oscillatory frequency of frontal thalamocortical circuits in schizophrenia. , 2012, Archives of general psychiatry.

[42]  M. Corbetta,et al.  A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain , 2012, Neuron.

[43]  M. Kahana,et al.  Human hippocampal theta oscillations and the formation of episodic memories , 2012, Hippocampus.

[44]  Gareth R. Barnes,et al.  Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution , 2012, NeuroImage.

[45]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[46]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[47]  G. Knyazev,et al.  The default mode network and EEG alpha oscillations: An independent component analysis , 2011, Brain Research.

[48]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[49]  M. Congedo,et al.  Group independent component analysis of resting state EEG in large normative samples. , 2010, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[50]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[51]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[52]  M. Massimini,et al.  Natural Frequencies of Human Corticothalamic Circuits , 2009, The Journal of Neuroscience.

[53]  Marcus Kaiser,et al.  Temporal Interactions between Cortical Rhythms , 2008, Front. Neurosci..

[54]  Peter Fransson,et al.  The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis , 2008, NeuroImage.

[55]  Yanling Yin,et al.  EEG default mode network in the human brain: Spectral regional field powers , 2008, NeuroImage.

[56]  R. Oostenveld,et al.  Frontal theta EEG activity correlates negatively with the default mode network in resting state. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[57]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[58]  E. Whitham,et al.  Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20Hz are contaminated by EMG , 2007, Clinical Neurophysiology.

[59]  C. Summerfield,et al.  An information theoretical approach to prefrontal executive function , 2007, Trends in Cognitive Sciences.

[60]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[61]  Arnaud Delorme,et al.  Frontal midline EEG dynamics during working memory , 2005, NeuroImage.

[62]  Sean L. Hill,et al.  The Sleep Slow Oscillation as a Traveling Wave , 2004, The Journal of Neuroscience.

[63]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[64]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[65]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[66]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[67]  G. Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[68]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[69]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[70]  J. Mäkelä,et al.  Magnetoencephalographic cortical rhythms. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[71]  Daphne N. Yu,et al.  High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. , 1997, Cerebral cortex.

[72]  Riitta Salmelin,et al.  Evidence for reactive magnetic 10-Hz rhythm in the human auditory cortex , 1997, Neuroscience Letters.

[73]  R. Hari,et al.  Human cortical oscillations: a neuromagnetic view through the skull , 1997, Trends in Neurosciences.

[74]  R. Hari,et al.  Characterization of spontaneous MEG rhythms in healthy adults. , 1994, Electroencephalography and clinical neurophysiology.

[75]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[76]  R. Hari,et al.  Magnetoencephalographic 10-Hz rhythm from the human auditory cortex , 1991, Neuroscience Letters.

[77]  R. Hari,et al.  Magnetic mu rhythm in man , 1989, Neuroscience.

[78]  M. Lewandowska,et al.  The relationship between alpha burst activity and the default mode network. , 2018, Acta neurobiologiae experimentalis.

[79]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity , 2011 .

[80]  Endel Tulving,et al.  Episodic memory , 2009, Scholarpedia.

[81]  G. Buzsáki Rhythms of the brain , 2006 .

[82]  W. Penfield,et al.  Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus , 2005, Archiv für Psychiatrie und Nervenkrankheiten.

[83]  L. Erőss,et al.  Rhythmic hippocampal slow oscillation characterizes REM sleep in humans , 2001, Hippocampus.

[84]  F. Crivello,et al.  Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of t , 2001 .

[85]  Erol Başar,et al.  Brain Natural Frequencies are Causal Factors for Resonances and Induced Rhythms , 1992 .

[86]  C. Stam,et al.  r Human Brain Mapping 32:413–425 (2011) r Network Analysis of Resting State EEG in the Developing Young Brain: Structure Comes With Maturation , 2022 .