The necessity of combining genomic and enzymatic data to infer metabolic function and pathways in the smallest bacteria: amino acid, purine and pyrimidine metabolism in Mollicutes.

Bacteria of the class Mollicutes have no cell wall. One species, Mycoplasma genitalium is the personification of the simplest form of independent cell-free life. Its small genome (580 kbp) is the smallest of any cell. Mollicutes have unique metabolic properties, perhaps because of their limited coding space and high mutability. Based on 16S rRNA analyses the Mollicutes Mycoplasma gallisepticum is thought to be the most mutable bacteria. Enzyme activities found in most Bacteria are absent from Mollicutes. The functions of apparently absent genes and enzymes can apparently be fulfilled by other genes and their expression products that have multiple capabilities. Because of these and other properties predictions of their metabolism based only on, e.g., either annotation, enzymatic assay, proteomic studies or structural analyses is problematic. To obtain a more confident appraisal of the functional capabilities of these simplest cells genomic and enzymatic data were combined to obtain a "metabolic consensus". The consensus is represented by a biochemical circuit for central metabolism involving purine and pyrimidine interconversions and their linkages to amino acid metabolism, glycolysis and the pentose phosphate pathway in three human Mollicutes pathogens: Mycoplasma pneumoniae, Mycoplasma genitalium and Ureaplasma urealyticum.

[1]  H. Mannherz,et al.  Mycoplasma nucleases able to induce internucleosomal DNA degradation in cultured cells possess many characteristics of eukaryotic apoptotic nucleases , 1998, Cell Death and Differentiation.

[2]  R. Gardella,et al.  Growth of Mycoplasma hyorhinis cultivar alpha on semisynthetic medium , 1995, Applied and environmental microbiology.

[3]  J. Kane,et al.  Diversity in the routing and regulation of complex biochemical pathways as indicators of microbial relatedness. , 1982, Critical reviews in microbiology.

[4]  S. Rottem,et al.  Protein kinase C activation and vacuolation in HeLa cells invaded by Mycoplasma penetrans. , 1998, Journal of medical microbiology.

[5]  L. Warren Nucleotides and Nucleosides , 1961 .

[6]  P. Hartman,et al.  Aromatic Amino Acid Biosynthesis and Carbohydrate Catabolism in Strictly Anaerobic Mollicutes (Anaeroplasma spp.) , 1990 .

[7]  D. Pitcher,et al.  Distribution of ecto 5'-nucleotidase on Mycoplasma species associated with arthritis. , 2000, FEMS microbiology letters.

[8]  G. Fasman,et al.  Physical and chemical data , 1976 .

[9]  A. Byström,et al.  A primordial tRNA modification required for the evolution of life? , 2001, The EMBO journal.

[10]  E. Rocha,et al.  The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. , 2001, Nucleic acids research.

[11]  T. Hoshino,et al.  Contribution of Cysteine Desulfurase (NifS Protein) to the Biotin Synthase Reaction of Escherichia coli , 2000, Journal of bacteriology.

[12]  K. Sugimura,et al.  High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro , 1992, Melanoma research.

[13]  J. Faber,et al.  Standardized bacteriologic techniques for the characterization of Mycoplasma species1, 2 , 1970 .

[14]  J. Pollack,et al.  PPi-dependent phosphofructotransferase (phosphofructokinase) activity in the mollicutes (mycoplasma) Acholeplasma laidlawii , 1986, Journal of bacteriology.

[15]  J. Pollack,et al.  Properties of the nucleases of mollicutes , 1982, Journal of bacteriology.

[16]  W. Russell,et al.  Urea-hydrolysis-dependent citrulline synthesis by Ureaplasma urealyticum. , 1992, FEMS microbiology letters.

[17]  J. Davis,et al.  Inorganic pyrophosphatase activity in cell-free extracts of Ureaplasma urealyticum. , 1987, Journal of general microbiology.

[18]  J. Pollack,et al.  The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. , 1997, Critical reviews in microbiology.

[19]  Yan P. Yuan,et al.  Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. , 2000, Nucleic acids research.

[20]  J. Pollack,et al.  The proteome of Mycoplasma genitalium. Chaps-soluble component. , 2000, European journal of biochemistry.

[21]  G. Kenny,et al.  Differences in accumulation of radiolabeled amino acids and polyamines by Mycoplasma and Acholeplasma species. , 1990, International journal of systematic bacteriology.

[22]  L. Gottfried,et al.  Amino Acid Transport in Mycoplasma , 1968, Journal of bacteriology.

[23]  J. Agar,et al.  Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. , 2000, Biochemistry.

[24]  L. Montagnier,et al.  Identification of Mycoplasma pirum genes involved in the salvage pathways for nucleosides , 1993, Journal of bacteriology.

[25]  F. Blattner,et al.  Functional Genomics: Expression Analysis ofEscherichia coli Growing on Minimal and Rich Media , 1999, Journal of bacteriology.

[26]  P. Babbitt,et al.  Homologous (β/α)8-Barrel enzymes that catalyze unrelated reactions: Orotidine 5'-monophosphate decarboxylase and 3-keto-L-gulonate 6-phosphate decarboxylase , 2002 .

[27]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[28]  S. Razin,et al.  NUCLEASES OF MYCOPLASMA. , 1964, Journal of general microbiology.

[29]  Elias S. J. Arnér,et al.  Mammalian deoxyribonucleoside kinases. , 1995, Pharmacology & therapeutics.

[30]  L. R. Finch,et al.  Enzymes of intermediary carbohydrate metabolism in Ureaplasma urealyticum and Mycoplasma mycoides subsp. mycoides. , 1985, Journal of general microbiology.

[31]  J. Shih,et al.  Absence of Mycoplasmal Gene in Malignant Mammalian Cells Transformed by Chronic Persistent Infection of Mycoplasmas , 1998, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[32]  L. Montagnier,et al.  Role of Mycoplasma penetransEndonuclease P40 as a Potential Pathogenic Determinant , 1999, Infection and Immunity.

[33]  M. G. Gabridge Metabolic consequences of Mycoplasma pneumoniae infection. , 1987, Israel journal of medical sciences.

[34]  C. Vandyk,et al.  Cloning of mnuA, a Membrane Nuclease Gene ofMycoplasma pulmonis, and Analysis of Its Expression inEscherichia coli , 1999, Journal of bacteriology.

[35]  W. Solbach,et al.  Prolyl isomerases in a minimal cell. Catalysis of protein folding by trigger factor from Mycoplasma genitalium. , 2000, European journal of biochemistry.

[36]  J. Pollack,et al.  Comparative metabolism of Mesoplasma, Entomoplasma, Mycoplasma, and Acholeplasma. , 1996, International journal of systematic bacteriology.

[37]  Yan P. Yuan,et al.  Predicting function: from genes to genomes and back. , 1998, Journal of molecular biology.

[38]  B. Pettersson,et al.  Mycoplasma cavipharyngis and Mycoplasma fastidiosum, the closest relatives to Eperythrozoon spp. and Haemobartonella spp. , 1999, FEMS microbiology letters.

[39]  R. McIvor,et al.  Differences in incorporation of nucleic acid bases and nucleosides by various Mycoplasma and Acholeplasma species , 1978, Journal of bacteriology.

[40]  J. Pollack,et al.  Presence of anaplerotic reactions and transamination, and the absence of the tricarboxylic acid cycle in mollicutes. , 1988, Journal of general microbiology.

[41]  M. C. McElwain,et al.  Enzymic activities of carbohydrate, purine, and pyrimidine metabolism in the Anaeroplasmataceae (class Mollicutes) , 2004, Archives of Microbiology.

[42]  S. Houten,et al.  Nonorthologous gene displacement of phosphomevalonate kinase. , 2001, Molecular genetics and metabolism.

[43]  K. Kocan,et al.  The cell wall-less rickettsia Eperythrozoon wenyonii is a Mycoplasma. , 1997, FEMS microbiology letters.

[44]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[45]  P. Furr,et al.  Intracellular location of mycoplasmas in cultured cells demonstrated by immunocytochemistry and electron microscopy. , 1991, International journal of experimental pathology.

[46]  H. Mannherz,et al.  Internucleosomal DNA fragmentation in cultured cells under conditions reported to induce apoptosis may be caused by mycoplasma endonucleases. , 1996, European journal of cell biology.

[47]  J. Pollack Mycoplasma genes: a case for reflective annotation. , 1997, Trends in microbiology.

[48]  K. Hackett,et al.  A defined medium for a fastidious Spiroplasma. , 1987, Science.

[49]  L. R. Finch,et al.  Enzymes of pyrimidine deoxyribonucleotide metabolism in Mycoplasma mycoides subsp. mycoides , 1983, Journal of Bacteriology.

[50]  J. Baseman,et al.  Adherence, fibronectin binding, and induction of cytoskeleton reorganization in cultured human cells by Mycoplasma penetrans , 1996, Infection and immunity.

[51]  T. Stadtman,et al.  The NIFS Protein Can Function as a Selenide Delivery Protein in the Biosynthesis of Selenophosphate* , 1998, The Journal of Biological Chemistry.

[52]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[53]  Michael Y. Galperin,et al.  Who's your neighbor? New computational approaches for functional genomics , 2000, Nature Biotechnology.

[54]  Y. Komada,et al.  Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. , 1997, International journal of hematology.

[55]  L. Montagnier,et al.  Purification and Characterization of Mycoplasma penetrans Ca 2 1 / Mg 2 1-Dependent Endonuclease , 1997 .

[56]  H. Hilbert,et al.  Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. , 1997, Nucleic acids research.

[57]  P. Bork,et al.  Predicting functions from protein sequences—where are the bottlenecks? , 1998, Nature Genetics.

[58]  K. Lewis,et al.  Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment , 2002, Science.

[59]  E. Stanbridge,et al.  Identification and characterization of proteinase K-resistant proteins in members of the class Mollicutes , 1991, Infection and immunity.

[60]  J. Pollack,et al.  Pyrimidine Deoxyribonucleotide Metabolism in Members of the Class Mollicutes , 1985 .

[61]  L. Kopelovich,et al.  Regulation of aspartate aminotransferase isozymes by glyceraldehyde-3-phosphate. , 1972, Advances in enzyme regulation.

[62]  J. Pollack,et al.  Lecithin Changes in Murine Mycoplasma pulmonis Respiratory Infection , 1979, Infection and immunity.

[63]  Robert H. White,et al.  Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. Yčas,et al.  On earlier states of the biochemical system. , 1974, Journal of theoretical biology.

[65]  J. Pollack Ureaplasma urealyticum: an opportunity for combinatorial genomics. , 2001, Trends in microbiology.

[66]  J. Tully 1 – CLASS MOLLICUTES: NEW PERSPECTIVES FROM PLANT AND ARTHROPOD STUDIES , 1989 .

[67]  F. Minion,et al.  Membrane-associated nuclease activities in mycoplasmas , 1993, Journal of bacteriology.

[68]  J. Goodacre,et al.  Inhibition of Human Peripheral Blood Mononuclear Cell Proliferation by Streptococcus pyogenes Cell Extract Is Associated with Arginine Deiminase Activity , 1998, Infection and Immunity.

[69]  R. Miles Catabolism in mollicutes. , 1992, Journal of general microbiology.

[70]  Michael Y. Galperin,et al.  Analogous enzymes: independent inventions in enzyme evolution. , 1998, Genome research.

[71]  M. Barile,et al.  Ciliostatic, hemagglutinating, and proteolytic activities in a cell extract of Mycoplasma pneumoniae , 1980, Infection and immunity.

[72]  R. Schimke,et al.  Presence of the Arginine Dihydrolase Pathway in Mycoplasma , 1966, Journal of bacteriology.

[73]  Thomas Dandekar,et al.  Suspected utility of enzymes with multiple activities in the small genome Mycoplasma species: the replacement of the missing "household" nucleoside diphosphate kinase gene and activity by glycolytic kinases. , 2002, Omics : a journal of integrative biology.

[74]  A. Görg,et al.  Towards a two‐dimensional proteome map of Mycoplasma pneumoniae , 2000, Electrophoresis.

[75]  M. Daniels,et al.  9 – PATHOGENICITY FACTORS IN MYCOPLASMAS AND SPIROPLASMAS , 1985 .

[76]  A. Rodwell NUTRITION AND METABOLISM OF MYCOPLASMA MYCOIDES VAR. MYCOIDES , 1960, Annals of the New York Academy of Sciences.

[77]  Y. Naot,et al.  Subversion and exploitation of host cells by mycoplasmas. , 1998, Trends in microbiology.

[78]  R. L. Booth,et al.  Respiration-associated components of Mollicutes , 1981, Journal of bacteriology.

[79]  Gary D Bader,et al.  A Combined Experimental and Computational Strategy to Define Protein Interaction Networks for Peptide Recognition Modules , 2001, Science.

[80]  J. Pollack,et al.  Metabolism of Mollicutes: the Embden—Meyerhof—Parnas Pathway and the Hexose Monophosphate Shunt , 1989 .

[81]  I. Rosenshine,et al.  Invasion of HeLa cells by Mycoplasma penetrans and the induction of tyrosine phosphorylation of a 145-kDa host cell protein. , 1995, FEMS microbiology letters.

[82]  J. Pollack,et al.  Distinctions in Mollicutes Purine Metabolism: Pyrophosphate-Dependent Nucleoside Kinase and Dependence on Guanylate Salvage , 1985 .

[83]  R. Davis,et al.  Phytoplasma: phytopathogenic mollicutes. , 2000, Annual review of microbiology.

[84]  J. Baseman,et al.  Intracellular DNA replication and long-term survival of pathogenic mycoplasmas. , 2000, Microbial pathogenesis.

[85]  Y. Naot,et al.  Molecular Biology and Pathogenicity of Mycoplasmas , 1998, Microbiology and Molecular Biology Reviews.

[86]  A. Liss,et al.  Enzymological features of aromatic amino acid biosynthesis reflect the phylogeny of mycoplasmas. , 1987, Journal of general microbiology.

[87]  F. Zölzer,et al.  Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis. , 1999, Biochemical and biophysical research communications.

[88]  J. Westberg,et al.  Novel deoxynucleoside‐phosphorylating enzymes in mycoplasmas: evidence for efficient utilization of deoxynucleosides , 2001, Molecular microbiology.

[89]  J. Pollack,et al.  Central Carbohydrate Pathways: Metabolic Flexibility and the Extra Role of Some “Housekeeping” Enzymes , 2002 .

[90]  A. Munch-Petersen,et al.  Metabolism of nucleotides, nucleosides and nucleobases in microorganisms , 1983 .

[91]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[92]  D. Stock,et al.  Thymidine metabolism in Mycoplasma hominis. , 1971, Journal of general microbiology.

[93]  A. Valencia,et al.  Intrinsic errors in genome annotation. , 2001, Trends in genetics : TIG.

[94]  V. Simonsen,et al.  Electrophoretic Analysis of Isoenzymes of Mycoplasma Species , 1983, Acta Veterinaria Scandinavica.

[95]  F. Zölzer,et al.  Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis , 2000, Leukemia.

[96]  W Arber,et al.  Genomic evolution during a 10,000-generation experiment with bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  S. Carr,et al.  The Essential Role of Mass Spectrometry in Characterizing Protein Structure: Mapping Posttranslational Modifications , 1997, Journal of protein chemistry.

[98]  J. Belisle,et al.  Identification of putative exported/secreted proteins in prokaryotic proteomes. , 2001, Gene.

[99]  J. Pollack,et al.  Synthesis of deoxyribomononucleotides in Mollicutes: dependence on deoxyribose-1-phosphate and PPi , 1987, Journal of bacteriology.

[100]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[101]  V. Tryon,et al.  Purine metabolism in Acholeplasma laidlawii B: novel PPi-dependent nucleoside kinase activity , 1984, Journal of bacteriology.

[102]  S. Cordwell Microbial genomes and “missing” enzymes: redefining biochemical pathways , 1999, Archives of Microbiology.

[103]  L. R. Finch,et al.  Formylation of methionyl-transfer ribonucleic acid in Mycoplasma mycoides subsp. mycoides , 1981, Journal of bacteriology.

[104]  S. Harrison,et al.  A theoretical limit to coding space in chromosomes of bacteria. , 2002, Omics : a journal of integrative biology.

[105]  S. Dhandayuthapani,et al.  Peptide Methionine Sulfoxide Reductase (MsrA) Is a Virulence Determinant in Mycoplasma genitalium , 2001, Journal of bacteriology.

[106]  S. Brenner Errors in genome annotation. , 1999, Trends in genetics : TIG.

[107]  J. Pollack,et al.  Metabolism of members of the Spiroplasmataceae , 1989 .

[108]  J. Davis,et al.  Purine and Pyrimidine Metabolism in Mollicutes Species , 1988 .

[109]  J. Pollack,et al.  Malate/lactate dehydrogenase in mollicutes: evidence for a multienzyme protein. , 1997, Gene.

[110]  Stanley L. Miller,et al.  On the Origin of Metabolic Pathways , 1999, Journal of Molecular Evolution.

[111]  A. Rodwell,et al.  4 – NUTRITION, GROWTH, AND REPRODUCTION , 1979 .

[112]  S. Razin Nucleic acid precursor requirements of Mycoplasma laidlawii. , 1962, Journal of general microbiology.

[113]  J. Messick,et al.  Genome size of Eperythrozoon suis and hybridization with 16S rRNA gene. , 2000, Canadian journal of microbiology.

[114]  Michael Y. Galperin,et al.  Sources of systematic error in functional annotation of genomes: domain rearrangement, non-orthologous gene displacement, and operon disruption , 1998, Silico Biol..

[115]  A. Lazcano,et al.  The Role of Gene Duplication in the Evolution of Purine Nucleotide Salvage Pathways , 1998, Origins of life and evolution of the biosphere.

[116]  S. Razin,et al.  A partially defined medium for the growth of Mycoplasma. , 1960, Journal of General Microbiology.

[117]  R. T. Walker,et al.  Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[118]  R. Jensen Enzyme recruitment in evolution of new function. , 1976, Annual review of microbiology.

[119]  D. Dessì,et al.  Mycoplasma hominis and Trichomonas vaginalis symbiosis: multiplicity of infection and transmissibility of M. hominis to human cells , 2000, Archives of Microbiology.

[120]  L. R. Finch,et al.  Uptake and utilization of deoxynucleoside 5'-monophosphates by Mycoplasma mycoides subsp. mycoides , 1984, Journal of bacteriology.