Fekete Collocation Points for Triangular Spectral Elements

We propose a new spectral element method based on Fekete points. We use the Fekete criterion to compute points which are almost optimal for approximation, diierentiation and quadrature. These grids have the same number of points as the dimension of the associated polynomial space, thus allowing us to use a cardinal function basis which leads to a diagonal mass matrix. For quadrilaterals, Gauss-Lobatto points are the unique Fekete points, making the method equivalent to the standard spectral element method. But unlike the Gauss-Lobatto points, Fekete points generalize to other domains such as the triangle. Furthermore, numerical and theoretical evidence suggests that the element boundary points are the Gauss-Lobatto points, making Fekete point triangular elements and quadrilateral elements naturally conform. Thus triangles and quadrilaterals can be combined in the same grid while retaining a diagonal mass matrix. We present an algorithm to compute Fekete points along with results for the triangle up to degree 19. For degree d > 10 these points have the smallest Lebesgue constant currently known.

[1]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[2]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[3]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .

[4]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[5]  Len Bos Bounding the Lebesgue function for Lagrange interpolation in a simplex , 1983 .

[6]  Triangular spectral element methods for geophysical fluid dynamics applications , 1995 .

[7]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[8]  Len Bos,et al.  Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .

[9]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[10]  George Em Karniadakis,et al.  Unstructured spectral element methods for simulation of turbulent flows , 1995 .

[11]  Len Bos,et al.  On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .

[12]  L. Fejér,et al.  Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grundfunktionen der Lagrangeschen Interpolation im Intervalle ein Möglichst kleines Maximum Besitzt , 1932 .

[13]  Mark A. Taylor,et al.  Performance of a spectral element atmospheric model (SEAM) on the HP Exemplar SPP2000 , 1998 .

[14]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[15]  Mirosław Baran Complex equilibrium measure and Bernstein type theorems for compact sets in ⁿ , 1995 .

[16]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[17]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .