Artificial neural networks applied to forecasting time series.
暂无分享,去创建一个
J. J. Montaño Moreno | A. Palmer Pol | Pilar Muñoz Gracia | Alfonso Palmer Pol | Juan J Montaño Moreno | Pilar Muñoz Gracia
[1] Roberto Battiti,et al. First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method , 1992, Neural Computation.
[2] James B. McDonald,et al. Time Series Prediction With Genetic‐Algorithm Designed Neural Networks: An Empirical Comparison With Modern Statistical Models , 1999, Comput. Intell..
[3] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[4] Mitchell B. Chamlin,et al. A time-series analysis of the impact of heavy drinking on homicide and suicide mortality in Russia, 1956-2002. , 2006, Addiction.
[5] Milton S. Boyd,et al. Designing a neural network for forecasting financial and economic time series , 1996, Neurocomputing.
[6] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[7] Timothy Masters,et al. Advanced algorithms for neural networks: a C++ sourcebook , 1995 .
[8] Alfonso Palmer,et al. Numeric sensitivity analysis applied to feedforward neural networks , 2003, Neural Computing & Applications.
[9] Albert Sesé,et al. Designing an artificial neural network for forecasting tourism time series , 2006 .
[10] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[11] Philip Hans Franses,et al. Recognizing changing seasonal patterns using artificial neural networks , 1997 .
[12] David S. Broomhead,et al. Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..
[13] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[14] Fabian Ramseyer,et al. Modeling psychotherapy process by time-series panel analysis (TSPA) , 2009, Psychotherapy research : journal of the Society for Psychotherapy Research.
[15] K. A. Loparo,et al. Nonlinear dynamical analysis of the neonatal EEG time series: The relationship between sleep state and complexity , 2008, Clinical Neurophysiology.
[16] Timothy Masters,et al. Practical neural network recipes in C , 1993 .
[17] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[18] J. J. Montaño,et al. Sensitivity Analysis Applied to Artificial Neural Networks for Forecasting Time Series , 2008 .
[19] P. Rochon,et al. Effect of regulatory warnings on antipsychotic prescription rates among elderly patients with dementia: a population-based time-series analysis , 2008, Canadian Medical Association Journal.
[20] J. Moreno,et al. Artificial neural networks applied to forecasting time series , 2011 .
[21] Jae Kyu Lee,et al. Performance of Neural Networks in Managerial Forecasting , 1993 .
[22] Aplicación del diseño de series temporales múltiples a un caso de intervención en dos clases de Enseñanza General Básica , 2000 .
[23] Jeffrey L. Elman,et al. Finding Structure in Time , 1990, Cogn. Sci..
[24] Hiok Chai Quek,et al. RLDDE: A novel reinforcement learning-based dimension and delay estimator for neural networks in time series prediction , 2007, Neurocomputing.
[25] A. P. Pol,et al. Redes neuronales artificiales aplicadas al análisis de supervivencia: un estudio comparativo con el modelo de regresión de Co x en su aspecto predictivo , 2002 .
[26] J. Guydish,et al. Investigating the Effects of San Francisco's Treatment on Demand Initiative on a Publicly-Funded Substance Abuse Treatment System: A Time Series Analysis , 2009, Journal of psychoactive drugs.
[27] Alfonso Pitarque,et al. Las redes neuronales como herramientas estadísticas no paramétricas de clasificación , 2000 .
[28] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[29] James D. Keeler,et al. Layered Neural Networks with Gaussian Hidden Units as Universal Approximations , 1990, Neural Computation.
[30] Stephen F. Witt,et al. Modeling and Forecasting Demand in Tourism , 1991 .