The Simons Observatory: the Large Aperture Telescope Receiver (LATR) integration and validation results

The Simons Observatory (SO) will observe the cosmic microwave background (CMB) from Cerro Toco in the Atacama Desert of Chile. The observatory consists of three 0.5 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT), covering six frequency bands centering around 30, 40, 90, 150, 230, and 280 GHz. The SO observations will transform the understanding of our universe by characterizing the properties of the early universe, measuring the number of relativistic species and the mass of neutrinos, improving our understanding of galaxy evolution, and constraining the properties of cosmic reionization. As a critical instrument, the Large Aperture Telescope Receiver (LATR) is designed to cool $\sim$ 60,000 transition-edge sensors (TES) to $<$ 100 mK on a 1.7 m diameter focal plane. The unprecedented scale of the LATR drives a complex design. In this paper, we will first provide an overview of the LATR design. Integration and validation of the LATR design are discussed in detail, including mechanical strength, optical alignment, and cryogenic performance of the five cryogenic stages (80 K, 40 K, 4 K, 1 K, and 100 mK). We will also discuss the microwave-multiplexing ($\mu$Mux) readout system implemented in the LATR and demonstrate the operation of dark prototype TES bolometers. The $\mu$Mux readout technology enables one coaxial loop to read out $\mathcal{O}(10^3)$ TES detectors. Its implementation within the LATR serves as a critical validation for the complex RF chain design. The successful validation of the LATR performance is not only a critical milestone within the Simons Observatory, it also provides a valuable reference for other experiments, e.g. CCAT-prime and CMB-S4.

[1]  Edward J. Wollack,et al.  Assembly development for the Simons Observatory focal plane readout module , 2020, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X.

[2]  Adrian T. Lee,et al.  Simons Observatory Small Aperture Telescope overview , 2020, Astronomical Telescopes + Instrumentation.

[3]  A. Kofman,et al.  The integration and testing program for the Simons Observatory Large Aperture Telescope optics tubes , 2020, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X.

[4]  Z. Ahmed,et al.  The Simons Observatory: Magnetic Sensitivity Measurements of Microwave SQUID Multiplexers , 2020, IEEE Transactions on Applied Superconductivity.

[5]  Z. Ahmed,et al.  A microwave SQUID multiplexer optimized for bolometric applications , 2020, Applied Physics Letters.

[6]  Edward J. Wollack,et al.  The Simons Observatory: metamaterial microwave absorber and its cryogenic applications. , 2020, Applied optics.

[7]  Adrian T. Lee,et al.  The Simons Observatory: modeling optical systematics in the Large Aperture Telescope. , 2020, Applied optics.

[8]  Adrian T. Lee,et al.  Assembly and Integration Process of the High-Density Detector Array Readout Modules for the Simons Observatory , 2020 .

[9]  Adrian T. Lee,et al.  Simons Observatory Microwave SQUID Multiplexing Readout: Cryogenic RF Amplifier and Coaxial Chain Design , 2020, 2003.08949.

[10]  Adrian T. Lee,et al.  Small Aperture Telescopes for the Simons Observatory , 2020, 2001.07848.

[11]  Adrian T. Lee,et al.  Broadband plasma sprayed ceramic anti-reflection coating for millimeter-wave astrophysics (Conference Presentation) , 2019, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II.

[12]  Adrian T. Lee,et al.  On-Sky Performance of the SPT-3G Frequency-Domain Multiplexed Readout , 2019, Journal of Low Temperature Physics.

[13]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  Brian Keating,et al.  The Simons Observatory: instrument overview , 2018, Astronomical Telescopes + Instrumentation.

[15]  David Brown,et al.  Highly-multiplexed microwave SQUID readout using the SLAC Microresonator Radio Frequency (SMuRF) electronics for future CMB and sub-millimeter surveys , 2018, Astronomical Telescopes + Instrumentation.

[16]  C. A. Oxborrow,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[17]  Brian Keating,et al.  Simons Observatory large aperture telescope receiver design overview , 2018, Astronomical Telescopes + Instrumentation.

[18]  Brian Keating,et al.  Cooldown strategies and transient thermal simulations for the Simons Observatory , 2018, Astronomical Telescopes + Instrumentation.

[19]  Brian Keating,et al.  Simons Observatory large aperture receiver simulation overview , 2018, Astronomical Telescopes + Instrumentation.

[20]  Jon E. Gudmundsson,et al.  The optical design of the six-meter CCAT-prime and Simons Observatory telescopes , 2018, Astronomical Telescopes + Instrumentation.

[21]  Edward J. Wollack,et al.  Cold optical design for the large aperture Simons' Observatory telescope , 2018, Astronomical Telescopes + Instrumentation.

[22]  Douglas Scott,et al.  Prime-Cam: a first-light instrument for the CCAT-prime telescope , 2018, Astronomical Telescopes + Instrumentation.

[23]  Bradley Dober,et al.  SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors , 2018, Journal of Low Temperature Physics.

[24]  P. A. R. Ade,et al.  Optical Characterization of the SPT-3G Camera , 2018, 1805.03219.

[25]  Shaul Hanany,et al.  CMB-S4 Technology Book, First Edition , 2017, 1706.02464.

[26]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[27]  Ari Brown,et al.  Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments , 2016, Astronomical Telescopes + Instrumentation.

[28]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT , 2016, The Astrophysical Journal Supplement Series.

[29]  A. Gilbert,et al.  The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.

[30]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[31]  P. A. R. Ade,et al.  The thermal design, characterization, and performance of the Spider long-duration balloon cryostat , 2015, 1506.06953.

[32]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[33]  F. Wellstood,et al.  An analysis method for asymmetric resonator transmission applied to superconducting devices , 2011, 1108.3117.

[34]  Giampaolo Pisano,et al.  A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.

[35]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[36]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.