The Simons Observatory: the Large Aperture Telescope Receiver (LATR) integration and validation results
暂无分享,去创建一个
Edward J. Wollack | M. Limon | J. Austermann | A. Kofman | F. Nati | Zhilei Xu | K. Harrington | M. Niemack | C. Reichardt | M. Devlin | S. Dicker | J. Hubmayr | S. Staggs | R. Thornton | M. Vissers | Steve K. Choi | S. Duff | B. Koopman | E. Vavagiakis | S. Ho | K. Arnold | G. Coppi | N. Cothard | B. Dober | G. Fabbian | N. Galitzki | E. Healy | Yaqiong Li | J. Orlowski-Scherer | J. Seibert | M. Silva-Feaver | S. Walker | N. Zhu | H. McCarrick | J. Connors | K. Zheng | Jack Lashner | Jenna Moore | T. Bhandarkar | Rita Sonka | J. Iuliano | Aamir M Ali | Saianeesh K. Haridas | Karen Perez Sarmiento | Yuhan Wang | K. P. Sarmiento | Rita F. Sonka
[1] Edward J. Wollack,et al. Assembly development for the Simons Observatory focal plane readout module , 2020, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X.
[2] Adrian T. Lee,et al. Simons Observatory Small Aperture Telescope overview , 2020, Astronomical Telescopes + Instrumentation.
[3] A. Kofman,et al. The integration and testing program for the Simons Observatory Large Aperture Telescope optics tubes , 2020, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X.
[4] Z. Ahmed,et al. The Simons Observatory: Magnetic Sensitivity Measurements of Microwave SQUID Multiplexers , 2020, IEEE Transactions on Applied Superconductivity.
[5] Z. Ahmed,et al. A microwave SQUID multiplexer optimized for bolometric applications , 2020, Applied Physics Letters.
[6] Edward J. Wollack,et al. The Simons Observatory: metamaterial microwave absorber and its cryogenic applications. , 2020, Applied optics.
[7] Adrian T. Lee,et al. The Simons Observatory: modeling optical systematics in the Large Aperture Telescope. , 2020, Applied optics.
[8] Adrian T. Lee,et al. Assembly and Integration Process of the High-Density Detector Array Readout Modules for the Simons Observatory , 2020 .
[9] Adrian T. Lee,et al. Simons Observatory Microwave SQUID Multiplexing Readout: Cryogenic RF Amplifier and Coaxial Chain Design , 2020, 2003.08949.
[10] Adrian T. Lee,et al. Small Aperture Telescopes for the Simons Observatory , 2020, 2001.07848.
[11] Adrian T. Lee,et al. Broadband plasma sprayed ceramic anti-reflection coating for millimeter-wave astrophysics (Conference Presentation) , 2019, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II.
[12] Adrian T. Lee,et al. On-Sky Performance of the SPT-3G Frequency-Domain Multiplexed Readout , 2019, Journal of Low Temperature Physics.
[13] Edward J. Wollack,et al. The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.
[14] Brian Keating,et al. The Simons Observatory: instrument overview , 2018, Astronomical Telescopes + Instrumentation.
[15] David Brown,et al. Highly-multiplexed microwave SQUID readout using the SLAC Microresonator Radio Frequency (SMuRF) electronics for future CMB and sub-millimeter surveys , 2018, Astronomical Telescopes + Instrumentation.
[16] C. A. Oxborrow,et al. Planck2018 results , 2018, Astronomy & Astrophysics.
[17] Brian Keating,et al. Simons Observatory large aperture telescope receiver design overview , 2018, Astronomical Telescopes + Instrumentation.
[18] Brian Keating,et al. Cooldown strategies and transient thermal simulations for the Simons Observatory , 2018, Astronomical Telescopes + Instrumentation.
[19] Brian Keating,et al. Simons Observatory large aperture receiver simulation overview , 2018, Astronomical Telescopes + Instrumentation.
[20] Jon E. Gudmundsson,et al. The optical design of the six-meter CCAT-prime and Simons Observatory telescopes , 2018, Astronomical Telescopes + Instrumentation.
[21] Edward J. Wollack,et al. Cold optical design for the large aperture Simons' Observatory telescope , 2018, Astronomical Telescopes + Instrumentation.
[22] Douglas Scott,et al. Prime-Cam: a first-light instrument for the CCAT-prime telescope , 2018, Astronomical Telescopes + Instrumentation.
[23] Bradley Dober,et al. SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors , 2018, Journal of Low Temperature Physics.
[24] P. A. R. Ade,et al. Optical Characterization of the SPT-3G Camera , 2018, 1805.03219.
[25] Shaul Hanany,et al. CMB-S4 Technology Book, First Edition , 2017, 1706.02464.
[26] Adrian T. Lee,et al. CMB-S4 Science Book, First Edition , 2016, 1610.02743.
[27] Ari Brown,et al. Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments , 2016, Astronomical Telescopes + Instrumentation.
[28] Edward J. Wollack,et al. THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT , 2016, The Astrophysical Journal Supplement Series.
[29] A. Gilbert,et al. The Polarbear-2 and the Simons Array Experiments , 2015, 1512.07299.
[30] Edward J. Wollack,et al. Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.
[31] P. A. R. Ade,et al. The thermal design, characterization, and performance of the Spider long-duration balloon cryostat , 2015, 1506.06953.
[32] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[33] F. Wellstood,et al. An analysis method for asymmetric resonator transmission applied to superconducting devices , 2011, 1108.3117.
[34] Giampaolo Pisano,et al. A review of metal mesh filters , 2006, SPIE Astronomical Telescopes + Instrumentation.
[35] Peter A. R. Ade,et al. The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.
[36] E. L. Wright,et al. The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.