Quasilinear cellular automata

Abstract Simulating a cellular automaton (CA) for t time-steps into the future requires t 2 serial computation steps or t parallel ones. However, certain CAs based on an Abelian group, such as addition mod 2, are termed linear because they obey a principle of superposition. This allows them to be predicted efficiently, in serial time O( t ) (Robinson, 1987) or O(log t ) in parallel. In this paper, we generalize this by looking at CAs with a variety of algebraic structures, including quasigroups, non-Abelian groups, Steiner systems, and other structures. We show that in many cases, an efficient algorithm exists even though these CAs are not linear in the previous sense; we term them quasilinear . We find examples which can be predicted in serial time proportional to t , t log t , t log 2 t and t α for α t , log t log log t and log 2 t . We also discuss what algebraic properties are required or implied by the existence of scaling relations and principles of superposition, and exhibit several novel “vector-valued” CAs.

[1]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[2]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[3]  John Pedersent Cellular Automata as Algebraic Systems , 1992 .

[4]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[5]  A. Sade Demosian Systems of Quasigroups , 1961 .

[6]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[7]  Alexander Rosa,et al.  Topics on Steiner systems , 1980 .

[8]  Cristopher Moore Non-Abelian Cellular Automata , 1995 .

[9]  Arch D. Robison,et al.  Fast Computation of Additive Cellular Automata , 1987, Complex Syst..

[10]  Stephen Wolfram Cryptography with Cellular Automata , 1985, CRYPTO.

[11]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[12]  B. Ganter,et al.  Co-Ordinatizing Steiner Systems , 1980 .

[13]  Robert Fisch,et al.  Cyclic cellular automata and related processes , 1990 .

[14]  A. Odlyzko,et al.  Algebraic properties of cellular automata , 1984 .

[15]  Cristopher Moore,et al.  Algebraic Properties of the Block Transformation on Cellular Automata , 1996, Complex Syst..

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  K. Eloranta,et al.  Partially permutive cellular automata , 1993 .

[18]  Max H. Garzon,et al.  Monomial Cellular Automata , 1993, Complex Syst..

[19]  Howard Gutowitz,et al.  Cryptography with Dynamical Systems , 1993 .