Evolving pattern recognition systems

A hybrid evolutionary learning algorithm is presented that synthesizes a complete multiclass pattern recognition system. The approach uses a multifaceted representation that evolves layers of processing to perform feature extraction from raw input data, select cooperative sets of feature detectors, and assemble a linear classifier that uses the detectors' responses to label targets. The hybrid algorithm, called hybrid evolutionary learning for pattern recognition (HELPR), blends elements of evolutionary programming, genetic programming, and genetic algorithms to perform a search for an effective set of feature detectors. Individual detectors are represented as expressions composed of morphological and arithmetic operations. Starting with a few small random expressions, HELPR expands the number and complexity of the features to produce a recognition system that achieves high accuracy. Results are presented that demonstrate the performance of HELPR-generated recognition systems applied to the task of classification of high-range resolution radar signals.

[1]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[2]  Terrence J. Sejnowski,et al.  Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.

[3]  Anil K. Jain,et al.  Dimensionality reduction using genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[4]  Wolfgang Banzhaf,et al.  A comparison of linear genetic programming and neural networks in medical data mining , 2001, IEEE Trans. Evol. Comput..

[5]  Louis A. Tamburino,et al.  An evolutionary learning system for synthesizing complex morphological filters , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[6]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[7]  Huan Liu,et al.  Neural-network feature selector , 1997, IEEE Trans. Neural Networks.

[8]  Louis A. Tamburino,et al.  Performance-driven autonomous design of pattern-recognition systems , 1992, Appl. Artif. Intell..

[9]  Mateen M. Rizki,et al.  Automatic generation of morphological sequences , 1992, Optics & Photonics.

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Ron Kohavi,et al.  The Wrapper Approach , 1998 .

[12]  Richard J. Enbody,et al.  Further Research on Feature Selection and Classification Using Genetic Algorithms , 1993, ICGA.

[13]  Fred Stentiford,et al.  Automatic Feature Design for Optical Character Recognition Using an Evolutionary Search Procedure , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  David B. Fogel,et al.  System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[15]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[16]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[17]  Mateen M. Rizki,et al.  Automatic generation of morphological programs , 1992 .

[18]  Jihoon Yang,et al.  Feature Subset Selection Using a Genetic Algorithm , 1998, IEEE Intell. Syst..

[19]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[20]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[21]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[22]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[23]  Louis A. Tamburino,et al.  E-Net: Evolutionary neural network synthesis , 2002, Neurocomputing.

[24]  Louis A. Tamburino,et al.  Generating Pattern- Recognition Systems Using Evolutionary Learning , 1995, IEEE Expert.

[25]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Siddhartha Bhattacharyya,et al.  Knowledge-intensive genetic discovery in foreign exchange markets , 2002, IEEE Trans. Evol. Comput..

[27]  Jerzy W. Bala,et al.  Hybrid Learning Using Genetic Algorithms and Decision Trees for Pattern Classification , 1995, IJCAI.

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Lalit M. Patnaik,et al.  Application of genetic programming for multicategory pattern classification , 2000, IEEE Trans. Evol. Comput..

[30]  Louis A. Tamburino,et al.  Resource Allocation for a Hybrid Evolutionary Learning System Used for Pattern Recognition , 1996, Evolutionary Programming.

[31]  Kenneth DeJong,et al.  Feature Space Transformation Using Genetic Algorithms , 1998, IEEE Intell. Syst..

[32]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .