In meso in situ serial X-ray crystallography of soluble and membrane proteins

A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing.

[1]  Michael Heymann,et al.  Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction , 2014, IUCrJ.

[2]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[3]  G. Petsko,et al.  Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. , 1993, Biochemistry.

[4]  Yoshiki Tanaka,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[5]  Garth J. Williams,et al.  Serial Femtosecond Crystallography of G Protein–Coupled Receptors , 2013, Science.

[6]  Randy J. Read,et al.  Evolving Methods for Macromolecular Crystallography , 2007 .

[7]  Stephen Corcoran,et al.  Radiation damage in protein crystals is reduced with a micron-sized X-ray beam , 2011, Proceedings of the National Academy of Sciences.

[8]  Florent Cipriani,et al.  CrystalDirect: a new method for automated crystal harvesting based on laser-induced photoablation of thin films. , 2012, Acta crystallographica. Section D, Biological crystallography.

[9]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[10]  E Blanc,et al.  Electronic Reprint Biological Crystallography Modelling Prior Distributions of Atoms for Macromolecular Refinement and Completion Roversi Et Al. ¯ Prior Distributions for Macromolecular Refinement and Completion , 2022 .

[11]  Sébastien Boutet,et al.  De novo protein crystal structure determination from X-ray free-electron laser data , 2013, Nature.

[12]  Z Dauter,et al.  Anomalous signal of solvent bromides used for phasing of lysozyme. , 1999, Journal of molecular biology.

[13]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[14]  S. Guha,et al.  In situ serial Laue diffraction on a microfluidic crystallization device. , 2014, Journal of applied crystallography.

[15]  T. Tomizaki,et al.  SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening , 2011 .

[16]  Manfred Burghammer,et al.  Lipidic cubic phase serial millisecond crystallography using synchrotron radiation , 2015, IUCrJ.

[17]  J. Lyons,et al.  Chapter 4 Monoacylglycerols: The Workhorse Lipids for Crystallizing Membrane Proteins in Mesophases , 2009 .

[18]  Victor H Hernandez,et al.  Nature Methods , 2007 .

[19]  Anthony Watts,et al.  Gating Topology of the Proton-Coupled Oligopeptide Symporters , 2015, Structure.

[20]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[21]  Anton Barty,et al.  Structural basis for bifunctional peptide recognition at human δ-Opioid receptor , 2015, Nature Structural &Molecular Biology.

[22]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[23]  References , 1971 .

[24]  Avinash Peddi,et al.  Electronic Reprint Biological Crystallography a Robotic System for Crystallizing Membrane and Soluble Proteins in Lipidic Mesophases Biological Crystallography a Robotic System for Crystallizing Membrane and Soluble Proteins in Lipidic Mesophases , 2022 .

[25]  David A Sivak,et al.  E pluribus unum, no more: from one crystal, many conformations. , 2014, Current opinion in structural biology.

[26]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[27]  V. Cherezov,et al.  Membrane protein crystallization in lipidic mesophases. A mechanism study using X-ray microdiffraction. , 2007, Faraday discussions.

[28]  H. Yamaguchi,et al.  X-ray diffraction of protein crystal grown in a nano-liter scale droplet in a microchannel and evaluation of its applicability. , 2012, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[29]  Sean McSweeney,et al.  Specific radiation damage can be used to solve macromolecular crystal structures. , 2003, Structure.

[30]  Synlett , 2022 .

[31]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[32]  Jesse B. Hopkins,et al.  Global radiation damage: temperature dependence, time dependence and how to outrun it. , 2013, Journal of synchrotron radiation.

[33]  Kay Diederichs Quantifying instrument errors in macromolecular X-ray data sets. , 2010, Acta crystallographica. Section D, Biological crystallography.

[34]  Faraday Discuss , 1985 .

[35]  R. Thorne,et al.  Can radiation damage to protein crystals be reduced using small-molecule compounds? , 2011, Acta crystallographica. Section D, Biological crystallography.

[36]  P. Andrew Karplus,et al.  Improved R-factors for diffraction data analysis in macromolecular crystallography , 1997, Nature Structural Biology.

[37]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[38]  Gwyndaf Evans,et al.  In situ macromolecular crystallography using microbeams , 2012, Acta crystallographica. Section D, Biological crystallography.

[39]  Ezequiel Panepucci,et al.  Fast native-SAD phasing for routine macromolecular structure determination , 2014, Nature Methods.

[40]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[41]  Anton Barty,et al.  Fixed-target protein serial microcrystallography with an x-ray free electron laser , 2014, Scientific Reports.

[42]  J. Ramos,et al.  In situ X-ray data collection from highly sensitive crystals of Pseudomonas putida PtxS in complex with DNA. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[43]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[44]  G Bricogne,et al.  Direct phase determination by entropy maximization and likelihood ranking: status report and perspectives. , 1993, Acta crystallographica. Section D, Biological crystallography.

[45]  Gwyndaf Evans,et al.  Outrunning free radicals in room-temperature macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[46]  R. Sweet,et al.  Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes , 2014, Acta crystallographica. Section D, Biological crystallography.

[47]  R. Misra,et al.  Biomaterials , 2008 .

[48]  David A Sivak,et al.  Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. , 2014, Structure.

[49]  M. Caffrey,et al.  The phase diagram of the monoolein/water system: metastability and equilibrium aspects. , 2000, Biomaterials.

[50]  James M. Holton,et al.  A beginner’s guide to radiation damage , 2009, Journal of synchrotron radiation.

[51]  A. Mozzanica,et al.  Capturing dynamics with Eiger, a fast-framing X-ray detector , 2012, Journal of synchrotron radiation.

[52]  Yiping Feng,et al.  Goniometer-based femtosecond crystallography with X-ray free electron lasers , 2014, Proceedings of the National Academy of Sciences.

[53]  M. Caffrey,et al.  A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa , 2014, Acta crystallographica. Section D, Biological crystallography.

[54]  B. Schmitt,et al.  EIGER: Next generation single photon counting detector for X-ray applications , 2011 .

[55]  A. N. Popov,et al.  A survey of global radiation damage to 15 different protein crystal types at room temperature: a new decay model , 2012, Journal of synchrotron radiation.

[56]  Claude Sauter,et al.  ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature , 2013 .

[57]  Nathaniel Echols,et al.  Accessing protein conformational ensembles using room-temperature X-ray crystallography , 2011, Proceedings of the National Academy of Sciences.

[58]  J. Lyons,et al.  A fast, simple and robust protocol for growing crystals in the lipidic cubic phase , 2012, Journal of applied crystallography.

[59]  M. Caffrey Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction. , 1987, Biochemistry.

[60]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[61]  Martin Caffrey,et al.  Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins , 2003 .

[62]  Henry N. Chapman,et al.  Serial crystallography on in vivo grown microcrystals using synchrotron radiation , 2014, IUCrJ.

[63]  Martin Caffrey,et al.  A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes , 2015, Acta crystallographica. Section F, Structural biology communications.

[64]  M. Caffrey,et al.  A simple mechanical mixer for small viscous lipid-containing samples. , 1998, Chemistry and physics of lipids.

[65]  Ezequiel Panepucci,et al.  Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams. , 2015, Acta crystallographica. Section D, Biological crystallography.

[66]  Anton Barty,et al.  Room-temperature macromolecular serial crystallography using synchrotron radiation , 2014, IUCrJ.

[67]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[68]  J. Lyons,et al.  Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters , 2014, EMBO reports.

[69]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[70]  Randy J. Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[71]  M. Caffrey,et al.  ‘Hit and run’ serial femtosecond crystallography of a membrane kinase in the lipid cubic phase , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.