What Can Argumentation Do for Inconsistent Ontology Query Answering?

The area of inconsistent ontological knowledge base query answering studies the problem of inferring from an inconsistent ontology. To deal with such a situation, different semantics have been defined in the literature (e.g. AR, IAR, ICR). Argumentation theory can also be used to draw conclusions under inconsistency. Given a set of arguments and attacks between them, one applies a particular semantics (e.g. stable, preferred, grounded) to calculate the sets of accepted arguments and conclusions. However, it is not clear what are the similarities and differences of semantics from ontological knowledge base query answering and semantics from argumentation theory. This paper provides the answer to that question. Namely, we prove that: (1) sceptical acceptance under stable and preferred semantics corresponds to ICR semantics; (2) universal acceptance under stable and preferred semantics corresponds to AR semantics; (3) acceptance under grounded semantics corresponds to IAR semantics. We also prove that the argumentation framework we define satisfies the rationality postulates (e.g. consistency, closure).

[1]  Leon van der Torre,et al.  Beyond Maxi-Consistent Argumentation Operators , 2012, JELIA.

[2]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[3]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[4]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[5]  Sebastian Rudolph,et al.  Walking the Complexity Lines for Generalized Guarded Existential Rules , 2011, IJCAI.

[6]  Reedchris,et al.  Towards an argument interchange format , 2006 .

[7]  Maurizio Lenzerini,et al.  Inconsistency-Tolerant Semantics for Description Logics , 2010, RR.

[8]  Claudette Cayrol,et al.  On the Relation between Argumentation and Non-monotonic Coherence-Based Entailment , 1995, IJCAI.

[9]  Jean-François Baget,et al.  Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints , 2011, J. Artif. Intell. Res..

[10]  Jürgen Dix,et al.  Research challenges for argumentation , 2009, Computer Science - Research and Development.

[11]  M. Chein,et al.  Graph-based Knowledge Representation and Reasoning , 2010, ICEIS.

[12]  Iyad Rahwan,et al.  Laying the foundations for a World Wide Argument Web , 2007, Artif. Intell..

[13]  Henry Prakken,et al.  On logical specifications of the Argument Interchange Format , 2013, J. Log. Comput..

[14]  Philippe Besnard,et al.  Bridging the Gap between Abstract Argumentation Systems and Logic , 2009, SUM.

[15]  Didier Dubois,et al.  Argumentative inference in uncertain and inconsistent knowledge bases , 1993, UAI.

[16]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[17]  Anthony Hunter,et al.  Elements of Argumentation , 2007, ECSQARU.

[18]  Meghyn Bienvenu,et al.  On the Complexity of Consistent Query Answering in the Presence of Simple Ontologies , 2012, AAAI.

[19]  Claudette Cayrol,et al.  Inferring from Inconsistency in Preference-Based Argumentation Frameworks , 2002, Journal of Automated Reasoning.

[20]  Jeff Z. Pan,et al.  An Argument-Based Approach to Using Multiple Ontologies , 2009, SUM.

[21]  Henry Prakken,et al.  A general account of argumentation with preferences , 2013, Artif. Intell..

[22]  Marie-Laure Mugnier,et al.  Graph-based Knowledge Representation - Computational Foundations of Conceptual Graphs , 2008, Advanced Information and Knowledge Processing.

[23]  Srdjan Vesic,et al.  Maxi-Consistent Operators in Argumentation , 2012, ECAI.